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Abstract

We introduce the TOUCHDOWN dataset for instruction following and spatial rea-
soning in a visually grounded environment. TOUCHDOWN contains instructions
paired with gold executions for the tasks of navigation and spatial description
resolution. TOUCHDOWN contains real-life, complex visual environments. We
show through qualitative analysis that TOUCHDOWN requires complex spatial
reasoning and contains a broad set of linguistic phenomena. Finally, we present
a text-conditioned image feature reconstruction approach for spatial description
resolution. Our results demonstrate the efficacy of our method, while highlighting
the remaining challenges.

1 Introduction
Consider the visual challenges of following natural language instructions in a busy urban environment.
Figure 1 illustrates this problem. The agent must identify objects and their properties to resolve
mentions to traffic light and American flags, identify patterns in how objects are arranged to find
the flow of traffic, and reason about how the relative position of objects changes as it moves to go
past objects. Reasoning about vision and language has been studied extensively with various tasks,
including visual question answering [e.g., Antol et al., 2015], visual navigation [e.g., Anderson et al.,
2018, Misra et al., 2018], and interactive question answering [e.g., Das et al., 2017]. However, existing
work has largely focused on relatively simple visual input, including object-focused photographs [Lin
et al., 2014, Reed et al., 2016] or simulated environments [Bisk et al., 2016, Das et al., 2017, Kolve
et al., 2017, Misra et al., 2018, Yan et al., 2018]. While this has enabled significant progress in visual
understanding, the use of real-world visual input not only increases the challenge of the vision task, it
also drastically changes the kind of language it elicits and requires fundamentally different reasoning.

In this paper, we study the problem of reasoning about vision and natural language using an interactive
visual navigation environment based on Google Street View.2 We design the task of following
instructions to reach a goal position, and then resolving a spatial description by identifying the
location in the observed image of Touchdown,3 a hidden teddy bear. Using this environment and task,
we release TOUCHDOWN,a dataset for navigation and spatial reasoning with real-life observations.

To collect diverse and challenging instructional language data, we design a series of crowdsourcing
tasks, focusing on a leader-and-follower design. First, a leader worker takes a sampled route in
Street View and writes natural language instructions describing the route. The worker then places
Touchdown in a location in the final position and describes this location. In a second separate task, a

∗Work done at Cornell University.
2https://developers.google.com/maps/documentation/streetview/intro
3Touchdown is the unofficial mascot of Cornell University.
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Turn and go with the flow of traffic. At the first traffic light turn left. Go past the next two traffic
light, As you come to the third traffic light you will see a white building on your left with many
American flags on it. Touchdown is sitting in the stars of the first flag.

Figure 1: An illustration of the task. The agent makes an initial environment observation and re-
orients itself (leftmost image). The agent follows the natural language instruction to navigate to
its goal position (center image). Upon reaching the goal, the agent resolves the spatial description
(underlined) to a location in the observed image to locate Touchdown the bear, which is not visible to
the agent. If the location is guessed correctly, Touchdown is revealed (rightmost image).

follower worker uses the written instructions to follow the route and find the target without knowledge
of the correct route or target location. We use the second task to validate the instructions written by the
leader. TOUCHDOWN contains 9,326 examples. Our linguistically-driven analysis of TOUCHDOWN
shows that the data requires complex spatial reasoning.

We conduct an empirical analysis of the task of finding Touchdown in the final image. We present
a text-conditioned image feature reconstruction approach for spatial description resolution using
LINGUNET [Misra et al., 2018], a recent model for spatial resolution, and compare its performance
to several baselines. Our qualitative and empirical analyses demonstrate that TOUCHDOWN poses a
challenging task. TOUCHDOWN will be made available at https://github.com/clic-lab/
touchdown.

2 Related Work
Jointly reasoning about vision and language has been studied extensively, most commonly focusing
on static visual input for reasoning about image captions [Chen et al., 2015, Lin et al., 2014, Suhr
et al., 2017, Reed et al., 2016] and grounded question answering [Antol et al., 2015, Zitnick and
Parikh, 2013]. Recently, the problem has been studied in interactive simulated environments where
the visual input changes as the agent acts, such as interactive question answering [Das et al., 2017,
Gordon et al., 2018] and instruction following [Misra et al., 2018, 2017]. In contrast, we focus on an
interactive environment with real-world observations.

The most related resources to ours are R2R Anderson et al. [2018] and Talk the Walk de Vries et al.
[2018]. R2R uses panorama graphs of house environments for the task of navigation instruction
following. R2R includes 90 unique environments, each containing an average of 119 panoramas,
significantly smaller than our 29,641 panoramas. We also observe that the language in our data is
significantly more complex than in R2R (Section 5). Our environment setup is also related to Talk the
Walk, which uses panoramas in small urban environments for a navigation dialogue task. In contrast
to our setup, the instructor does not observe the panoramas directly, but instead sees a simplified
diagram of the environment with a small set of pre-selected landmarks. As a result, the instructor
has less spatial information compared to TOUCHDOWN. Instead the focus is on agent-to-agent
conversational coordination.

3 Tasks and Evaluation
We design two tasks: navigation and spatial description resolution (SDR). The agent’s goal in the
navigation task is to follow a natural language instruction and reach a goal position. In the SDR task,
given an image and a natural language description, the task is to identify the point in the image that is
referred to by the description. Both tasks require recognizing objects and the spatial relations between
them. The navigation task focuses on egocentric spatial reasoning, where instructions refer to the
agent’s relationship with its environment, including the objects it observes. The SDR task displays
more allocentric reasoning, where the language requires understanding the relations between the
observed objects to identify the target location. The navigation task requires generating a sequence of
actions from a small set of possible actions. The SDR task requires choosing a specific pixel in the
observed image. Both tasks present different learning challenges. The navigation task could benefit
from reward-based learning, while the SDR task defines a supervised learning problem. The two
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Task I: Instruction Writing The worker starts at the beginning of the route facing north (a). The prescribed route is shown in the overhead
map (bottom left of each image). The worker faces the correct direction and follows the path, while writing instructions that describe these
actions (b). After following the path, the worker reaches the goal position, places Touchdown, and completes writing the instruction (c).
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Task II: Panorama Propagation Given the
image from the leader’s final position (top),
including Touchdown’s placement, and the
instructions (right), the worker annotates the
location of Touchdown in the neighboring
image (bottom).

Task III: Validation The worker begins in
the same heading as the leader, and follows
the instructions (bottom left) by navigating.
When the worker believes they have reached
the goal, they guess the target location by
clicking in the Street View image.

Task IV: Instruction Segmentation The en-
tire instruction is shown on the lefthand side.
The worker highlights segments correspond-
ing to the navigation and target location sub-
tasks. On the right, the highlighted sentence
is shown to the worker.

Figure 2: Illustration of the data collection process.

tasks can be addressed separately, or combined by completing the SDR task at the goal position at
the end of the navigation.

Each of the tasks include several evaluation metrics. For navigation, we use three evaluation metrics:
task completion, shortest-path distance, and trajectory edit distance. In SDR, we evaluate accuracy
and distance error, which is the mean distance of the predicted pixel from the gold label.

4 Data Collection
We frame the data collection process as a treasure-hunt task where a leader hides a treasure and writes
directions to find it, and a follower follows the directions to find the treasure. The process is split into
four crowdsourcing tasks illustrated in Figure 2. The two main tasks are writing and following. In
the writing task, a leader follows a prescribed route and hides Touchdown the bear at the end, while
writing instructions that describe the path and how to find Touchdown. The following tasks requires
following the written instructions from the same starting position to navigate and find Touchdown.
Additional tasks are used to segment the instructions into the navigation and target location tasks,
and to propagate Touchdown’s location to panoramas that neighbor the final panorama. We use a
customized Street View interface for the writing and following tasks. However, the final data uses
a static set of panoramas that do not require the Street View interface. Figure 2 illustrates the data
collection process.

5 Data Statistics and Analysis

TOUCHDOWN contains a total of 9,326 examples, split into 70%/15%/15% training/development/test
sets. The environment includes 29,641 panoramas from New York City. In the training and devel-
opment sets, instructions are on average 108.0 tokens long, where navigation segments contain on
average 89.6 tokens and SDR segments contain on average 29.8 tokens. Routes include 35.2 panora-
mas on average. Table 1 shows linguistic analysis comparing TOUCHDOWN and R2R. Our analysis
shows that resolving semantic phenomena like coordination, spatial relations, and comparisons is
key to successfully completing the navigation and SDR tasks. Our data displays a significantly more
diverse set of semantic phenomena compared to R2R.
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Phenomenon R2R TOUCHDOWN Example from TOUCHDOWN
c µ±σ c µ±σ

Reference to
25 3.7 25 10.7 . . . You’ll pass three trashcans on your left . . .unique entity

Coreference 8 0.5 22 2.4 . . . a brownish colored brick building with a black fence around it. . .
Comparison 1 0.0 6 0.3 . . . The bear is in the middle of the closest tire.
Sequencing 4 0.2 22 1.9 . . . Turn left at the next intersection . . .
Count 4 0.2 11 0.5 . . . there are two tiny green signs you can see in the distance . . .
Allocentric

5 0.2 25 2.9 . . . There is a fire hydrant, the bear is on topspatial relation
Egocentric

20 1.2 25 4.0
. . . up ahead there is some flag poles

spatial relation on your right hand side. . .
Imperative 25 4.0 25 5.3 . . . Enter the next intersection and stop . . .
Direction 22 2.8 24 3.7 . . . Turn left. Continue forward . . .
Temporal condition 7 0.4 21 1.9 . . . Follow the road until you see a school on your right. . .
State verification 2 0.1 21 1.8 . . . You should see a small bridge ahead . . .

Table 1: Linguistic analysis of 25 randomly sampled development examples in TOUCHDOWN and
R2R. We annotate each example for the presence and count of each phenomenon. c is the number of
instructions out of the 25 containing at least one example of the phenomenon; µ is the mean number
of times each phenomenon appears in each of the 25 instructions.

Method A@40px A@80px A@120px Dist
RANDOM 0.21 0.78 1.89 1179
CENTER 0.31 1.61 3.93 759
AVERAGE 2.43 5.21 7.96 744
TEXT2CONV 24.82 30.40 34.13 747
LINGUNET 26.11 34.59 37.81 708

Table 2: Test results on the SDR task. We report accuracy with different thresholds (40, 80, and 120)
and mean distance error.

6 Initial Experiments and Results
We evaluate three non-learning baselines on the SDR task and two learning approaches. The non-
learning baselines are: (a) RANDOM: predict a pixel at random; (b) CENTER: predict the center pixel;
(c) AVERAGE: predict the average pixel, computed over the training set. The learning approaches are
TEXT2CONV, and LINGUNET. In both methods, we encode the the description into a fixed vector
representation with a recurrence neural network. We compute image feature using RESNET18 He
et al. [2016]. TEXT2CONV uses the text representation to compute convolution filters that are
used to convolve over the image features. We apply a multi-layer perceptron on the outputs of the
convolution, computing the distribution over pixels with a softmax. This allows the model to learn
the interaction between the text and image modalities [Chen et al., 2016], but at the cost of a large
number of parameters. The second approach treats the problem of pixel-scoring as a text-conditioned
image feature reconstruction problem with the LINGUNET architecture. LINGUNET uses the text
representation to generate a set of 1×1 convolution filters and convolves the image feature map with
them through several layers. We then perform a series of deconvolutions to generate a feature map
with the same shape as the input image but with a single channel. We apply a softmax operation to
this feature map to generate the target probabilities. Using 1×1 filters, we avoid the need to project
the text representation to large convolution filters as required in the TEXT2CONV architecture.

Table 2 shows SDR test results. We observe that using LINGUNET provides a significant boost in
performance over the three baselines while requiring fewer parameters.

7 Data Distribution and Licensing
We release an environment graph as panorama IDs and edges, scripts to download the RGB panoramas
using the official Google API, the collected data, and our code. These parts of the data are released
with a CC-BY 4.0 license. Retention of downloaded panoramas should follow Google’s policies. We
also provide RESNET18 image features of the panoramas by request. To follow Google’s terms-of-
service, we collect the emails of all people holding the image features to request data deletion upon
request from Google and for other announcements. The complete license is available with the data.

8 Conclusion
We present TOUCHDOWN, a challenging dataset for visual navigation and spatial description resolu-
tion situated in a the complex New York City urban environment. Our linguistically-driven qualitative
analysis and empirical results show TOUCHDOWN presents complex language and vision challenges.
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