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Abstract

We introduce a task and a learning environment for following navigational instruc-
tions in Google Street View. We sample ∼100k routes in 100 regions in 10 U.S
cities. For each route, we obtain navigation instructions, build a connected graph
of locations and the real-world images available at each location, and extract visual
features. Evaluation of existing models shows that this setting offers a challenging
benchmark for agents navigating with the help of language cues in real-world
outdoor locations. They also highlight the need to have start-of-path orientation
descriptions and end-of-path goal descriptions as well as route descriptions.

1 Introduction
The development of agents capable of providing and following navigational instructions has many
practical applications and has the potential to drive significant advances in natural language un-
derstanding. Such applications necessitate research into linking language to the real world. Many
new benchmarks linking language to the visual world have been created recently, including video
captioning [1], image captioning [2, 3], referring expression recognition [4–6], visual question an-
swering [7], and visual dialogue [8]. However, for these tasks, the perceptual input to the system is
static i.e. the system’s behavior does not change the perceived input. Recent studies propose more
realistic scenarios where a system is asked to complete a task in a simulated environment where the
perceptual input dynamically changes depending on the actions of the system. These environments
either use a synthetic [9–12] or indoor environments [13, 14]. However, synthetic environments lower
the complexity of visual scenes observed by the system. Realistic indoor environments also lack
the chaotic nature of the visual world we observe on a daily basis. Outdoor learning environments
[15–17], on the other hand, almost always guarantee that each scene consists of a unique combination
of a high variety of objects. The transient nature of objects seen in an outdoor scene also poses several
challenges for a system that is trained on an environment with snapshot images, but need to act in the
real-world. However, we currently lack the large-scale data resources and environments to explore
language for navigation in such real world settings that is commensurate with the complexity of the
scenes and degrees of freedom involved.

This paper describes our preliminary efforts to build agents for simulated but messy real world
environments with many degrees of freedom for movement, as part of our wider work on real world
grounded language understanding [18]. To evaluate the capabilities of systems linking language into
actions in an outdoor setting, a notoriously challenging real-world scenario, we introduce a novel task
and an environment. In our setup, an agent is placed on a random starting point in a one-kilometer
square region in a city and asked to navigate to a target point given an instruction sequence. The
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Figure 1: Top, The agent’s visual input for a point. An orange frame indicates a navigable direction.
Four directions are navigable in this example because the agent is at an intersection. Bottom-Left,
The agent’s real-world map location (the red octagon indicates the angles of image snapshots).
Bottom-right, the connectivity of locations between navigable neighboring points.

actual coordinates and associated maps data are withheld from our agents, so they must rely on the
visual environment and the language provided from the route description. At each point, the agent
perceives eight images covering 360°perception at that physical point in the real-world and decides
on moving to the next navigable point in its neighborhood. We evaluate baseline models from the
literature [19] in this setting and find that their success rate is much lower than in a realistic indoor
environment [13]. These results suggest outdoor instruction following poses several novel challenges
to the vision, language, and robotics communities.

2 Street Simulator
We build an environment for agent navigation in a simulation of real-world outdoor settings. This
requires real-world locations; for this, we use the publicly available Google Street View API2 and
Google Directions API.3 The environment represents 1 km2 regions of real-world locations. We
sample a grid of locations spaced 20 meters apart using the Google Street View API and build a
connectivity graph of undirected edges between them. At each location, we split the 360°panorama
into eight images. Each image is connected to neighboring locations using the angle of the image and
the distance between its location and the neighboring points. Using the graph, agents move from one
location to another by choosing a navigable image. A sample map, the connectivity of locations, and
the agent’s point of view through images are in Figure 1.

Each navigation task consists of a start and end point, a path, and a sequence of navigation instructions.
At each step, the agent has access to the instruction sequence and the current visual input, and it
chooses one of the navigable images to move to. We created routes in 10 cities in the United States,
with 10 manually selected regions per city (7 for training, 1 for development, and 2 for testing). We
create tasks by sampling start and end locations that are at least 100 meters apart and obtain path
instructions from the Google Directions API. Table 2 gives statistics for training and validation splits
combined, a sample visualization of regions for Atlanta, Georgia,4 and distributions of instruction
and path lengths. Across all regions, the average number of steps is 38.6, with average length 770
meters, which is much greater than the Room-to-Room dataset’s [13] average length of 10 meters
(about 4-5 steps). The average number of tokens per path instruction is 27.6.

3 Experiments
We experiment with a baseline model based on a sequence-to-sequence approach [13, 19]. Figure 3
shows an overview of the model. We encode the instruction of length L with a bi-directional LSTM
[20, 21]. Specifically, given an instruction of length L, we embed each token of the instruction xi to

2https://developers.google.com/maps/documentation/streetview/intro
3https://developers.google.com/maps/documentation/directions/start
4Due to space limitations, we cannot provide statistics and visualizations for all cities.
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Figure 2: Top-left, The total number of points, the number of paths, and vocabulary size for a city in
training and validation splits. Top-right, Visualization of 10 regions for Atlanta. Green, orange, and
purple regions indicate training, validation, and test splits. Bottom-left, Distribution of instruction
length for Atlanta regions. Bottom-right, distribution of path lenght in terms of the number of steps
for Atlanta regions.

a vector and feed it to a two-layer LSTM. The final layer of the bi-LSTM forms the context vector
ĥenc = henc1 , henc2 , ..., hencL for the action decoder that generate the sequences of actions.

We generate the sequences of actions with a decoder LSTM by processing the visual input, previously
taken action, and dynamically attending to the context vector ĥenc of the instruction. At each time
step t, the decoder LSTM is fed with an embedding of the previously taken action and a visual sensory
input to look at all snapshots. We calculate the visual-sensory input with an attention mechanism
over the 8 snapshot images of different directions. The attention weights at,i and attention probability
αt,i for each direction i is calculated with the decoder memory from the previous timestep hdect−1 as
follows: at,i =W1h

dec
t−1W2vt,i and αt,i = exp(at,i)/

∑
i exp(at,i). The hidden state of the decoder

LSTM hdect is then used to attend the context representation of the instruction ĥenc to induce the
textual h̃dect for predicting an action . We calculate the probability of an action pj to one of the

8 directions j using a bi-linear product yj =
(
W3h̃

dec
t

)T
W4uj and pj = exp(yj)/

∑
j exp(yj)

where uj is the concatenation of a convolution neural net, the vector representing the angle of the
camera taking the snapshot image, and optical character recognition (OCR) output features for an
image snapshot at direction j.

Implementation Details. We train a sequence-to-sequence model with stochastic gradient descent
with a learning rate of 0.001 for 50 epochs for each city. The number of units for instruction
embeddings, hidden state of encoder and decoder LSTM is set to 128.
Evaluation. We train agents for each city and measure four metrics on the validation split of all
10 cities. Success rate gives the percentage of times the agent navigates to within 40 meters of the
target. Oracle success rate measures the percentage of agent paths that pass within 40 meters of the
target. Action accuracy measures the performance of the agent for predicting the right action while
navigating in ‘teacher-forcing’ regime [22, 13] where ground-truth actions are fed to the environment
at each timestep. Error distance gives the average distance between the final location and the target.
Results. Figure 4 shows results for our experiments. For most of the source-target pairs, the agent’s
success rate is lower than 1%. Note that the same architecture achieves around 31.2% completion
rate in an indoor environment when provided natural language descriptions. The low success rate
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Figure 4: Success rate (left) and oracle success rate (right) for the sequence-to-sequence agent. The
y-axis shows the source city for training, x-axis shows the target city for testing.

Figure 5: Action prediction accuracy (left) and average error distance (right).

of the baseline agent shows that outdoor scenes from the real-world pose a challenging scenario for
navigation following agents. It also indicates that we need natural language descriptions of routes
that are more directly connected to the visual environment. As with indoor environments, there is a
large gap between the oracle success rate and the success rate for the baseline model: identifying
where to stop remains an essential aspect of such navigation tasks.
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Figure 3: An overview of the model.

Figure 5 shows action accuracy and
the error distance. Since the aver-
age true path length is high for our
routes, even over 90% action accu-
racy nonetheless results in high error
distances. This results highlight the
challenge of following a navigation
instruction for a long path.

4 Conclusion
Our experiments show that outdoor
scenes pose novel challenges for
agents navigating in the real-world.
Such an environment should bene-
fit natural language processing, com-
puter vision, and robotics community
as a testbed for several navigation-
based tasks, especially as more layers
of annotation are added. In particular, the results from the preliminary experiments discussed in this
paper indicate we need three distinct components to each path: (a) descriptions of initial heading to
orient the agent and start moving in the right direction, (b) descriptions for the route and (c) a detailed
description of the stopping point. These are all needed for successful completion of the Street View
navigation task by human participants.
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