
Keep Drawing It: Iterative language-based image
generation and editing

Alaaeldin El-Nouby∗1,4, Shikhar Sharma2, Hannes Schulz2, Devon Hjelm2,3,5,
Layla El Asri2, Samira Ebrahimi Kahou2, Yoshua Bengio3,5,6, Graham W. Taylor1,4,6

1University of Guelph 2Microsoft Research 3Montreal Institute for Learning Algorithms
4Vector Institute for Artificial Intelligence 5University of Montreal

6Canadian Institute for Advanced Research
aelnouby@uoguelph.ca,

{shikhar.sharma, hannes.schulz, devon.hjelm, layla.elasri, samira.ebrahimi}@microsoft.com
yoshua.bengio@mila.quebec, gwtaylor@uoguelph.ca

Abstract
Conditional text-to-image generation approaches commonly focus on generating a
single image in a single step. One practical extension beyond one-step generation
is an interactive system that generates an image iteratively, conditioned on ongoing
linguistic input / feedback. This is significantly more challenging as such a system
must understand and keep track of the ongoing context and history. In this work,
we present a recurrent image generation model which takes into account both the
generated output up to the current step as well as all past instructions for generation.
We show that our model is able to generate the background, add new objects, apply
simple transformations to existing objects, and correct previous mistakes. We
believe our approach is an important step toward interactive generation.

1 Motivation and Related Work

Computer vision is a fundamental skill for building intelligent agents as vision is one of the primary
modes from which humans build their experience and understanding. Applications of computer
vision are far-reaching and in this work, we focus on visual generation. Intelligent systems that can
generate visual outputs can be used for education, entertainment, graphic design, and the creative arts.
A natural language interface to such systems would make computer vision technology accessible to a
larger population. For instance, a model that can understand text-based instructions and edit an image
based on these instructions would be usable by non-experts.

Recent advances in generative modeling of images [1–3] have fueled further advances in generation
conditioned on labels [4], captions [5–8], and dialogues [9]. A next step is to make this process
interactive and learn to iteratively generate images based on previously generated images and from
continual linguistic input. Making use of the Collaborative Drawing [CoDraw, 10] dataset, we define
the Generative Neural Visual Artist (GeNeVA) task. This task models an interaction between a
teller and a drawer. With an image in mind, the teller guides the drawer through composing this
image via linguistic instructions and feedback. This is a challenging task because the drawer needs
to understand the mapping between the instructions and what they refer to on the drawing canvas.
Additionally, the drawer needs to resolve ambiguous instructions and modify the existing drawing to
accommodate new changes in a plausible manner. The ideal drawer should also be able to modify the
drawing without violating any of the past instructions.

In recent work, Sharma et al. [9] proposed a model that generates images using dialogue. This model
is not interactive and does not proceed iteratively: it reads the entire dialogue to generate a single

∗work was performed during an internship with Microsoft Research

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.



final image. There has also been recent work on generating images in a recurrent manner but without
incorporating any external linguistic input nor feedback [11, 12]. Another model, proposed by Lin
et al. [13], recursively generates parameters of transformations instead of generating the images
themselves. To the best of our knowledge, our model is the first model that recursively generates and
modifies intermediate images based on continual text instructions such that the images are consistent
with past instructions. To summarize, the key contributions of this research are:

• We introduce the GeNeVA task and propose a novel recurrent Generative Adversarial Network
(GAN) architecture that specializes in plausible image modification in the context of a dialogue.
• We introduce the Interactive CLEVR (i-CLEVR) dataset, a modified version of Compositional

Language and Elementary Visual Reasoning (CLEVR) [14], for incremental building of CLEVR-
style scenes based on linguistic instructions.

2 Model

In this section, we describe our conditional recurrent GAN model for the GeNeVA task. An overview
of the model architecture is shown in Figure 1.

D

GRU

Conditioning 

Augmentation

D

Conditioning 

Augmentation

G

D

GRU

Conditioning 

Augmentation

D

Conditioning 

Augmentation

G

Figure 1: At each time step,G generates a new image
conditioned on the previous image encoding fGt−1

and the conversation encoding ht.

During an n-step interaction between a teller
and a drawer, the teller provides a drawing can-
vas x0 and instructions Q = {q0, q1, . . . , qn}.
For each turn of the conversation, the con-
ditioned generator G generates a new im-
age: x̃t = G(z | fGt−1 , ht), where z is a
noise vector sampled from a normal distri-
bution N (0, 1) of dimension Nz , fGt−1 is a
context-free condition, and ht is a context-
aware condition. The context-free condition
fGt−1

= EG(x̃t−1) is an encoding of the pre-
viously generated image x̃t−1 using an en-
coder EG which is a shallow Convolutional
Neural Network (CNN). The encoding pro-
duces low resolution feature maps of dimen-
sions (Kg×Kg×Ng).

Each instruction qt is encoded using a bi-
directional Gated Recurrent Unit (GRU) on
top of GloVe word embeddings [15]. The in-
struction encoding is denoted by dt.

To provide context, both in terms of instruc-
tions and previously generated images, the context-aware condition ht = R(dt, ht−1) is the output
of a recursive function R which takes the instruction encoding dt as well as the previous condition
ht−1 as inputs. We implement R with a GRU. The dimension of ht is Nc.

The context-free condition fGt−1 represents the prior that the model is given from the most recently
generated image whereas the context-aware condition ht represents the additions or modifications
that the teller is describing for the new image. We would like to let the model decide how much it
should rely on fGt−1 given the context ht. Let LfGt

be the feature maps of an intermediate layer in
the generator. LfGt

has the exact same dimensions as fGt−1
. The feature maps passed to the next

layer L̂fGt
are a convex combination of fGt−1

and LfGt
:

L̂fGt
= σtLfGt

+ (1− σt)fGt−1 ,

where σt is a vector of length Ng whose elements lie in the range [0, 1], computed from the
context-aware condition ht using two linear layers followed by a sigmoid function.

In our implementation, the context-aware condition ht is concatenated to the noise vector z after
applying conditioning augmentation [6] as shown in Figure 1. Similar to Miyato and Koyama [16],
ht is used to condition batch normalization for all the convolutional layers of the generator.

Since we are modeling iterative composition of images, having a discriminator D that at each step
only distinguishes between realistic and unrealistic images will not be sufficient. The discriminator

2



should be able to tell when the image is modified incorrectly or not modified at all. To ensure this,
we make three modifications to the discriminator. First, D is conditioned on the context-aware vector
ht and context-free feature maps fDt−1 = ED(x̃t−1) of dimension (Kd×Kd×Nd), where the image
encoder ED is a shallow CNN. To encourage the discriminator to focus on the modifications, fDt−1

is subtracted from the discriminator’s intermediate layer LfD with the same spatial dimensions (same
number of channels Nd as well). The context-aware condition ht is applied through projections [16].
Second, for the discriminator loss, in addition to labeling real images as positive examples and
generated images as negative examples, we add a term for the combination of (real image, wrong
instruction), similar to Reed et al. [5]. Finally, we add to the discriminator the auxiliary objective [17]
of detecting all objects added at the current time step:

LD = LDreal + λLDfake + (1− λ)LDwrong + βLaux.

The generator and discriminator are trained alternately to minimize the adversarial hinge loss [18–20].

The loss function for the auxiliary task is simply a binary cross entropy over N objects. The generator
loss is unchanged. Additionally, to help with training stability, we apply zero-centered gradient
penalty regularization on the real data alone as suggested by Mescheder, Geiger, and Nowozin [21].

The network architecture for the generator and discriminator follows the ResBlocks architecture
introduced by Miyato and Koyama [16]. Following SAGAN [20], we use spectral normalization for
all layers in the discriminator. We add a self-attention layer to the intermediate layers with spatial
dimensions 16×16 for the discriminator and the generator. The image encoders EG and ED have
separate parameters, as they have to be optimized for adversarial objectives, the generator’s and the
discriminator’s respectively. For the training dynamics, the generator and discriminator parameters
are updated every time step, while the encoders’ parameters are updated every sequence. The text
encoder and the GRU are trained with respect to the discriminator objective only. For training, we
use teacher forcing with the ground truth images xt−1 instead of the generated image x̃t−1, but we
use x̃t−1 during test time. Additional implementation details are provided in Appendix D.

3 Datasets

For the GeNeVA task, we require a dataset that contains textual instructions describing drawing
actions and the corresponding ground-truth images for each instruction. To the best of our knowledge,
the only publicly available dataset that fits this task is Collaborative Drawing (CoDraw). We provide a
brief summary of CoDraw in Appendix B.2. We also create a new dataset called i-CLEVR specifically
designed for this task.

i-CLEVR: CLEVR [14] is a popular dataset for Visual Question Answering (VQA). It is programmat-
ically generated, and its generation code is open-source2. CLEVR contains images of collections of
objects with different shapes, colors, materials and sizes. Each image is assigned complex questions
about object counts, attributes or existence.

We modify CLEVR to create an interactive version with sequences of images. Every image comes
with an instruction to add an object with some specific attributes in a position relative to objects that
already exist in the image. The task is to add the object with the correct attributes in a plausible
position based on the textual instruction. To make the task more complex and force the model to
have context, we refer to the most recently added object by it instead of stating its attributes. The
initial drawing canvas x0 for i-CLEVR consists of an empty background. The dataset contains 10,000
sequences. Each sequence has 5 images and instructions. More details about the dataset generation
along with examples can be found in Appendix B.1. We plan to release the dataset to the public soon.

Both datasets only have at most one instance of the same object in a sequence. For CoDraw, we treat
the concatenated utterances of the drawer and the teller at time step t as the instruction.

4 Results

Evaluation Metrics: Standard metrics for evaluating GANs such as the inception score or FID
only capture how realistic the generations look relative to the real images. They cannot capture if

2https://github.com/facebookresearch/clevr-dataset-gen

3

https://github.com/facebookresearch/clevr-dataset-gen


Drawer: what is there ?
Teller: large apple tree the
far right with half of it off
the picture. Drawer: done

and

Teller: cloud in the left
corner with just slight part of
the left hanging off. Drawer:

okay and

Teller: girl with arms up
under the tree with part of

her feet hanging off picture
facing right. Drawer: okay

and

Teller: guy slightly left of
middle with hair above

horizon both hands in the air
facing right. Drawer: done

and

Teller: table far left under
horizon line with left side

out of picture , cat under the
leg of that. Drawer: done

Add a yellow cylinder at the
center

Add a green cube behind it
on the left

Add a red cylinder behind it
on the right and behind the
yellow cylinder on the right

Add a brown sphere in front
of it on the right and in front
of the yellow cylinder on the

right

Add a purple sphere in front
of it on the left and in front

of the green cube on the right

Figure 2: Generation examples from our model on CoDraw (top row) and i-CLEVR (bottom-row).

the model is correctly modifying the images as described in the GeNeVA task instructions. A good
evaluation metric for this task needs to identify if all the objects that were described by the teller
are present in the generated image. It should also check that the objects’ positions and relationships
match the instructions. To capture all of these constraints, we train an object localizer on the training
data. For every example, we compare the detections of this localizer on the real images and the
generated ones. We present the precision, recall, and F1-score for this object detection task. We
also construct a graph where the nodes are objects present in the images and edges are positional
relationships: left, right, behind, front. We compare the graphs constructed from the real and the
generated images to test the correct placement of objects, without requiring the model to draw the
objects in the same exact locations (which would have defied its generative nature). More details
about this evaluation metric can be found in Appendix C.

Table 1: Evaluation results for experiments on CoDraw and i-CLEVR datasets

Metric CoDraw i-CLEVR

Precision 67.61 75.71
Recall 56.36 64.68
F1-Score 61.47 69.76
Relational Similarity 42.01 56.91

We present some examples of images generated by our model in Figure 2. Due to space constraints,
more generated images are presented in Appendix A.

Qualitative and Quantitative Results: On CoDraw, we observe that the model is able to generate
scenes that are consistent with the conversation and generation history, and gets most of the coarse
details correct (such as large objects and their relative positions) but has difficulty in capturing
fine-grained details (such as tiny objects, facial expressions, and object poses). The model also
struggles when a single instruction asks to add several objects at once. For i-CLEVR, the model
captures spatial relationships and colours very accurately as demonstrated in Figure 2. However, there
is some ambiguity in the object shapes, especially between cylinders and cubes. In some instances,
the model fails to add the fifth object when the image is already crowded and there is no space left to
add it without moving the others. We present all the quantitative metrics in Table 1.

Conclusion and Future Work: We presented a recurrent GAN model for the GeNeVA task and
show that the model is able to draw reasonable images for the provided instructions. An interesting
future research direction would be to have a system that can also ask questions to the user when it
needs clarifications. More datasets are also needed to scale this task to photo-realistic images.

4



References

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y.
Bengio. “Generative Adversarial Nets”. In: Advances in Neural Information Processing Systems 27.
2014.

[2] D. P. Kingma and M. Welling. “Auto-encoding variational bayes”. In: Proceedings of the International
Conference on Learning Representations (ICLR). 2014.

[3] A. V. Oord, N. Kalchbrenner, and K. Kavukcuoglu. “Pixel Recurrent Neural Networks”. In: International
Conference on Machine Learning (ICML). 2016.

[4] M. Mirza and S. Osindero. “Conditional Generative Adversarial Nets” (2014). arXiv: 1411.1784
[cs.AI].

[5] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee. “Generative Adversarial Text to
Image Synthesis”. In: International Conference on Machine Learning (ICML). 2016.

[6] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and D. Metaxas. “StackGAN: Text to Photo-
realistic Image Synthesis with Stacked Generative Adversarial Networks”. In: International Conference
on Computer Vision (ICCV). 2017.

[7] S. Hong, D. Yang, J. Choi, and H. Lee. “Inferring Semantic Layout for Hierarchical Text-to-Image
Synthesis”. In: Conference on Computer Vision and Pattern Recognition (CVPR). 2018.

[8] T. Xu, P. Zhang, Q. Huang, H. Zhang, Z. Gan, X. Huang, and X. He. “AttnGAN: Fine-Grained Text to
Image Generation With Attentional Generative Adversarial Networks”. In: Conference on Computer
Vision and Pattern Recognition (CVPR). 2018.

[9] S. Sharma, D. Suhubdy, V. Michalski, S. E. Kahou, and Y. Bengio. “ChatPainter: Improving Text to
Image Generation using Dialogue”. In: International Conference on Learning Representations (ICLR)
Workshop. 2018.

[10] J.-H. Kim, D. Parikh, D. Batra, B.-T. Zhang, and Y. Tian. “CoDraw: Visual Dialog for Collaborative
Drawing” (2017). arXiv: 1712.05558 [cs.CV].

[11] D. J. Im, C. D. Kim, H. Jiang, and R. Memisevic. “Generating images with recurrent adversarial networks”
(2016). arXiv: 1602.05110 [cs.LG].

[12] J. Yang, A. Kannan, D. Batra, and D. Parikh. “LR-GAN: Layered recursive generative adversarial
networks for image generation”. In: Proceedings of the International Conference on Learning Represen-
tations (ICLR). 2017.

[13] C.-H. Lin, E. Yumer, O. Wang, E. Shechtman, and S. Lucey. “ST-GAN: Spatial Transformer Genera-
tive Adversarial Networks for Image Compositing”. In: Conference on Computer Vision and Pattern
Recognition (CVPR). 2018.

[14] J. Johnson, B. Hariharan, L. van der Maaten, J. Hoffman, L. Fei-Fei, C. L. Zitnick, and R. Girshick.
“Inferring and Executing Programs for Visual Reasoning”. In: International Conference on Computer
Vision (ICCV). 2017.

[15] J. Pennington, R. Socher, and C. Manning. “Glove: Global vectors for word representation”. In: Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP). 2014.

[16] T. Miyato and M. Koyama. “cGANs with Projection Discriminator”. In: International Conference on
Learning Representations (ICLR). 2018.

[17] A. Odena, C. Olah, and J. Shlens. “Conditional Image Synthesis with Auxiliary Classifier GANs”. In:
International Conference on Machine Learning (ICML). 2017.

[18] J. H. Lim and J. C. Ye. “Geometric gan” (2017). arXiv: 1705.02894 [stat.ML].
[19] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. “Spectral Normalization for Generative Adversarial

Networks”. In: International Conference on Learning Representations (ICLR). 2018.
[20] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena. “Self-Attention Generative Adversarial Networks”

(2018). arXiv: 1805.08318 [stat.ML].
[21] L. Mescheder, A. Geiger, and S. Nowozin. “Which Training Methods for GANs do actually Converge?”

In: International Conference on Machine learning (ICML). 2018.
[22] Blender Online Community. “Blender - a 3D modelling and rendering package” (2016).
[23] J. Ba, R. Kiros, and G. E. Hinton. “Layer Normalization” (2016). arXiv: 1607.06450 [stat.ML].
[24] S. Ioffe and C. Szegedy. “Batch Normalization: Accelerating Deep Network Training by Reducing

Internal Covariate Shift”. Journal of Machine Learning Research (JMLR) (2015).
[25] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization.” (2014). arXiv: 1412.6980

[cs.LG].
[26] T. Tieleman and G. Hinton. “Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent

magnitude”. COURSERA: Neural networks for machine learning 4.2 (2012).

5

http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1712.05558
http://arxiv.org/abs/1602.05110
http://arxiv.org/abs/1705.02894
http://arxiv.org/abs/1805.08318
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980


A Generation Examples

In this section we present some examples generated using our model on two datasets, CoDraw and
i-CLEVR.

A.1 CoDraw

Teller: big cloud on left
corner , only half is visible .

Drawer: ok.

Teller: below cloud , big
bear facing right , hands on

sky . Drawer: ok.

Teller: medium tent on
right facing right , little

above horizon . Drawer:
ok.

Teller: small pine on right ,
behind tent , top and side

cut . Drawer: ok.

Teller: sad girl hands on
front facing left , on front

right flap of tent . Drawer:
ok.

Teller: a big cloud on left
corner , only half is visible .

Drawer: ok.

Teller:on center right , a
small hot balloon , a little

bit down top line . Drawer:
ok.

Teller: on left a mike smile
, one hand up . a little bit
above lower line and 1 ”

from left frame . Drawer:
ok.

Teller: mike faces right .
on front mike , jenny is

happy with both hands on
front , she faces left . a
football on middle even

with heads. Drawer: ok.

Teller: on far left , medium
tree , cropped top and right
side about 1 4 . Drawer: ok

Teller: cloud , no lightning ,
top left , the top of it is cut

off. Drawer: got it.

Teller: big pine tree to the
right , the right side and top
are out of frame. Drawer:

okay.

Teller: swing set to the left ,
the left swing swinging.

Drawer: okay.Teller: left
leg of swings out of frame ,
top is about an inch away
from the cloud. Drawer:

got it.

Teller: a boy smiling with
his leg out , facing the left ,
in front of the ride side of

the swings. Drawer: got it.

Teller:he ’s holding a
frisbee in the hand above

his outstretched leg.
Drawer: okay

Teller: on the right is a
large girl sitting with legs

out , mad face , facing left .
her eyes are at horizon back

hand is slightly cut off.
Drawer: got it.

Teller: above her in the
right top corner is a large

cloud . cut off at the top and
right side . Drawer: got it.

Teller: on the left is a large
oak tree , hole facing right .
the top of the trunk is at the
horizon line and a little is

cut off on the side. Drawer:
is girl occluding the tree ?

Teller: to the right of the
tree is a large boy standing
with one arm up , sad face ,

facing right . neck is at
horizon line . Drawer:
ignore my question .

Teller: okay . they boys
head slightly overlaps the
tree leaves . he has a star

hat on and is holding a hot
dog. Drawer: ok.

Teller: small hot air
balloon in the upper right
corner , just touching both

edges. Drawer: ok.

Teller: a large slide is on
the right side , bottom off

the edge . the upper corner
of the platform touches the
horizon . half of the ladder

is off . Drawer: ok.

Teller: just right of center ,
medium , shocked mike
runs right . his shoulders
are above the horizon .

Drawer: ok.

Teller: centered in the left
sky is a large cloud . it ’s
just below the top edge .

Drawer: ok.

Teller: centered under the
cloud , smiling jenny runs

right , chin above the
horizon . Drawer: ok.

Figure 3: Generation examples from our model for the CoDraw dataset.

6



A.2 i-CLEVR

Add a green sphere at the
center

Add a cyan cube behind it
on the left

Add a brown cylinder in
front of it on the right and
in front of the green sphere

on the right

Add a yellow cylinder in
front of it on the left and in

front of the cyan cube

Add a brown sphere in front
of the cyan cube on the left
and behind the green sphere

on the left

Add a red cube at the center Add a purple cube behind it
on the right

Add a cyan cylinder in front
of it on the left and in front
of the red cube on the left

Add a yellow cube in front
of the purple cube on the
left and in front of the red

cube on the left

Add a cyan sphere in front
of the purple cube on the

right and on the right of the
red cube

Add a purple cylinder at the
center

Add a brown sphere in front
of it on the right

Add a brown cylinder
behind it on the left and

behind the purple cylinder
on the right

Add a cyan sphere behind
the brown sphere on the left

and behind the purple
cylinder on the left

Add a cyan cube in front of
the brown cylinder on the

left and in front of the
brown sphere on the left

Add a yellow cube at the
center

Add a brown cylinder in
front of it on the right

Add a gray cylinder
behind it on the right and
behind the yellow cube on

the right

Add a cyan cylinder behind
the brown cylinder on the
left and behind the yellow

cube on the left

Add a purple cube in front
of the gray cylinder on the

left and in front of the
yellow cube on the left

Add a gray cube at the
center

Add a red cylinder behind it
on the right

Add a brown cylinder in
front of it on the right and

in front of the gray cube on
the right

Add a brown sphere in
front of the red cylinder
on the right and in front
of the gray cube on the

right

Add a green cylinder in
front of the red cylinder on
the left and in front of the

gray cube on the left

Figure 4: Generation examples from our model for the i-CLEVR dataset. Instructions where the
model made a mistake are in bold.

B Datasets

As the GeNeVA is a newly-proposed task, we needed to either repurpose existing, or create new
datasets for evaluation. In this section, we describe the details of building the two datasets used in
our experiments.

7



Add a cyan cylin-
der at the center

Add a red cube be-
hind it on the left

Add a purple cylin-
der in front of it
on the right and in
front of the cyan
cylinder

Add a purple cube
behind it on the
right and in front
of the red cube on
the right

Add a yellow cylin-
der behind the pur-
ple cylinder on the
left and behind the
red cube on the
right

Figure 5: An example i-CLEVR images-instruction sequence.

B.1 i-CLEVR

CLEVR [14] is one of the popular datasets for the VQA task which is programmatically generated.
We build on top of the open-source generation code3 for CLEVR to create interactive CLEVR
(i-CLEVR). Each example in the dataset consists of a sequence of 5 (image, instructions) pairs.
Starting from an empty canvas (background), each instruction describes an object to add the canvas
in terms of shape and color. The instruction also describes where the object should be placed relative
to existing objects in the scene. In order to make the task more challenging and to require awareness
of the context, the most recently added object is referred to as “it”. An example from the i-CLEVR
dataset is presented in Figure 5.

To generate the image for each step in the sequence, an object with random attributes is rendered to
the scene using Blender [22]. However, we make sure that all objects have a unique combination
of attributes. Each object can have one of 3 shapes (cube, sphere, cylinder) and one of 8 colors. In
contrast to CLEVR, we have a fixed material and size for objects. For the first image in the sequence,
the object placement is fixed to the image center. For all the following images, the objects are
placed in a random position while maintaining visibility (not completely occluded) and at a minimum
distance from other objects.

As for the instruction generation, we use a simple text template. For example, the second instruction
in the sequence will have the following template:

Add a [object color] [object shape] [relative position: depth] it on the [relative position: horizontal]

Starting from the third instruction, the object position is described relative to two objects. These two
objects are chosen randomly.

The i-CLEVR dataset consists of 10,000 sequences, consisting of 50,000 images and instructions.
The training split consists of 6,000 sequences while the validation and testing splits consist of 2,000
sequences each. The dataset and its generation code will be made public.

B.2 CoDraw

CoDraw [10] is a recently released clip art-like dataset. It consists of scenes of images of children
playing in a park. The children have different poses and expressions, the scenes include other objects
as trees, tables, animals, etc. There are 58 object types in total. For every scene, there is a conversation
between a teller and a drawer (both Amazon Mechanical Turk (AMT) workers) in natural language.
The drawer updates the canvas based on teller instructions, the drawer can ask questions as well for
clarification. The dataset consists of 9,993 scenes of varying lengths. An example of such scenes is
shown in Figure 6. The initial drawing canvas x0 for CoDraw provided to the drawer consists of the
background having just the sky and grass.

Pre-processing: In some instances of the original dataset, the drawer waited for multiple teller
turns before modifying the image. In these cases, we concatenate consecutive turns into a single turn
until the drawer modifies the image. We also concatenate turns until a new object has been added or
removed. Thus, every turn has an image corresponding to it with different number of objects. We
inject a special delimiting token between the teller and drawer utterances in the same turn. The teller

3https://github.com/facebookresearch/clevr-dataset-gen

8

https://github.com/facebookresearch/clevr-dataset-gen


Turn 1 Turn 2 Turn 3 Turn 4
Teller: top left corner
boig sun , orange part
cut . right side far right
medium apple tree . i see
4 apples

Teller: left side girl big
size , running , facing
right . head above hori-
zon .

Teller: covering the tree
, on the right side of the
scene is a boy , kicking
, facing left . head on
green part . big size ,
black glasses . kicking
ball .

Teller: make tree a size
bigger , move it up and
left a bit . boys hand cov-
ers trunk

Drawer: ok ready Drawer: ok Drawer: ok Drawer: ok

Figure 6: An example CoDraw [10] images-conversation pair

and drawer text contains several spelling mistakes and we run the Bing Spell Check API4 over the
entire dataset to make corrections. For words that are not present in the train vocabulary, we use the
“unk” word embedding from GloVe. We use the same train-valid-test split proposed in the original
CoDraw dataset.

C Evaluation Metrics

The object detector and localizer is based on the Inception-v3 architecture. We modify the last
layer for object detection and replace it with two heads. The first head is a linear layer with a sigmoid
activation function to serve as the object detector. It is trained with binary cross-entropy loss. The
second head is a linear layer where we regress all the objects’ coordinates. This head is trained with
L2-loss with a mask applied to only compute loss over objects that occur in the ground truth image
provided in the dataset. We initialize the model using pre-trained weights trained over the ILSVRC12
(ImageNet) dataset and fine-tune on the CoDraw or i-CLEVR datasets.

Relational Similarity: To compare the arrangement of objects qualitatively, we use the above
object detector/localizer to determine the type and position of objects in the ground truth and the
generated image. We estimate a scene graph for each image, in which the detected objects and the
image center are the vertices. The directed edges are given by the left-right and front-back relations
between the vertices. To compute a relational similarity metric on scene graphs, we determine how
many of the ground truth relations are present in the generated image:

relational similarity = recall×
|EGgen

∩ EGgt
|

|EGgt
|

where ‘recall’ is the recall over objects detected in the generated image w.r.t objects detected in the
ground truth image. EGgt is the set of relational edges for the ground truth image corresponding to
vertices common to both ground truth images and generated images, and EGgen is the set of relational
edges for the generated image corresponding to vertices common to both ground truth images and
generated images. The graph similarity for the complete dataset is reported by taking the mean across
time-steps of individual examples and then a mean over the entire dataset. This metric is somewhat
strict as it penalizes relationships based on how the objects are positioned in the ground truth image.
The instructions might allow for more plausible positions for relationships that are not explicitly
mentioned in the instructions.

D Implementation Details

We add layer normalization [23] for the text encoding GRU as well as the the GRU modeling R. We
add batch normalization [24] to the output of the image encoder Ec. We found that adding these
normalization methods was important for gradient flow to all modalities.

4https://azure.microsoft.com/en-us/services/cognitive-services/spell-check/

9

https://azure.microsoft.com/en-us/services/cognitive-services/spell-check/


For training, we used teacher forcing by using the ground truth images xt−1 instead of the generated
image x̃t−1, but we use x̃t−1 at test time. Generated images on both i-CLEVR and CoDraw are of
size 128× 128 pixels. We use the Adam optimizer [25] for the GAN, with learning rates of 0.0004
for the discriminator and the 0.0001 for the generator, trained with an equal number of updates. We
use RMSProp [26] for the text encoder with learning rate of 0.001, and also RMSProp for the GRU
with learning rate of 0.0001.

The default hyper-parameters are Nz = 100, Nc = 1024, Kg = 16, Ng = 128, Kd = 8, Nd = 256
and γ = 10. We found β = 10 and λ = 0.8 to work the best in our experiments.

10


	Motivation and Related Work
	Model
	Datasets
	Results
	Generation Examples
	CoDraw
	i-CLEVR

	Datasets
	Interactive CLEVR
	Collaborative Drawing

	Evaluation Metrics
	Implementation Details

