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Abstract

Learning object models in the wild from natural human-robot interactions is es-1

sential for robots to operate in real environments. Natural human interactions are2

in essence multimodal, including among others language and gestures. The main3

contribution of this paper is the development and evaluation of an incremental4

learning algorithm that uses data from such interactions. Our experiments show5

the first results within this area and confirm the challenges of the task.6

1 Introduction7

Models trained offline on large datasets cannot, in general, address some challenges of real data in8

home environments. One example is the long-tail distribution, i.e., objects that appear rarely and for9

which few or none training samples exist in common databases. Another example is the changing10

nature of the environments, with new objects appearing, e.g. food products that did not exist when the11

large training datasets were created. In order to address these and other cases, robotic learning should12

be incremental. Moreover, a key aspect in service robotics is a comfortable and intuitive human-robot13

interaction. Such interaction is needed to capture data to update the world models incrementally,14

from the user’s knowledge and behavior, and in a natural manner. We believe the best interaction is15

natural language and gestures, similarly to how the user would teach something to another person.16

This paper addresses incremental learning of object models from natural human-robot interaction.17

The human should be able to teach unknown objects to the robot, so that the robot can identify them18

later on. Our approach (Figure 1) is based on [2] and brings specific contributions at the 3 main steps:19

Figure 1: Overview of our approach. A human user teaches a robot new objects through natural
interactions (e.g., pointing to it). The robot recognizes the type of interaction, finds the corresponding
object region on its camera views and updates the object model incrementally with that data.

Multimodal Interaction Recognition. An accurate identification of the human-robot interactions is20

a key aspect, as the strategy to find object patches, needed for training, depends on it. Differently21

from [2], we incorporate user skeleton detection [4] to guide the hand search.22

Target Object Detection. For each interaction type we select the image patches that are likely to23

contain the target object. We use a combination of the segmentation given by MaskRCNN [9] and24

the superpixel segmentation proposed in [2].25
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Incremental Learning. This is our main contribution. Incremental learning was not addressed in26

[2], since they focused mostly on the previous two aspects. The candidate patches obtained in the27

previous step are used as training samples. We propose an approach based on incremental clustering28

and K-Nearest Neighbour for classification.29

2 Related work30

Very related to our work, Pascuale et al. [18] uses CNN features and SVM for visual recognition.31

The training data consists of egocentric images where a human presents an object in front of the32

robot. Camoriano et al. [3] uses such data and presents a variation of Regularized Least Squares33

for incremental object recognition. In mobile robotics, we find multiple examples that propose34

how to incrementally adapt environment visual models as the robot moves. These approaches are35

often based on Gaussian mixture models that can be easily updated and maintained to recognize36

regions of interest for the robot [6, 19]. Yao et al. [24] proposed an incremental learning method,37

that continually updates an object detector and detection threshold, as the user interactively corrects38

annotations proposed by the system. Kuznetsova et al. [15] investigated incremental learning for39

object recognition in videos. Vatakis et al. [22] shows multimodal recording approach similar to ours,40

but their dataset’s goal was to capture user reactions to stimuli with objects or images in a screen.41

In recent years, significant advances have been made in the field of incremental learning. Works42

like Aksoy et al. [1] are able to incrementally learn semantic event chains (SECs) extracted from43

actions using human demonstration. The most classic works presented variations or combinations44

with k-means clustering algorithm. Murty et al. [17] combines k-means with multilevel representation45

of the clusters. Likas et al. [16] presents a global algorithm that adds a new cluster and dynamically46

updates the others by applying the k-means algorithm multiple times. Other approaches apply a47

data transformation based on self-organizing maps (SOM) Neural Networks. [7] presents an online48

unsupervised system with an incremental update of a Neural Network based on SOM (SOINN). [23]49

presents a variant of the Self-Organizing Incremental Neural Networks that incrementally transform50

the nodes in the layers of the SOINN using the local distribution. [8] uses SOM to reduce the51

dimensionality of the data, but it needs to keep all the data in memory for re-training. [10] presents a52

work that combines the SOINN data transformation with SVM for classification.53

In robotics, we find situations where the robot interacts directly with the scene, e.g., moving an object,54

to build an incremental object model [13, 5, 12, 14, 20]. Our approach is complementary to these55

works, as human interaction is needed in real scenarios, e.g., if the object is out of robot’s reach.56

3 Incremental Object Model Learning from Interactions57

Our approach enables a robot to learn object models incrementally, while limiting the size of the58

stored data. The proposed approach selects and stores representative object views (image patches) for59

each object, selected from the input candidate patches obtained following the strategy from [2].60

3.1 Object model and descriptors.61

Our database consists of a set of descriptors for each representative object view. Each of these62

descriptors is the centroid of a database cluster, and an object model will be composed of several63

of these clusters. We consider descriptors that are reasonably small and fast to compute, since our64

system is designed for robotic platforms, where computation is typically limited. Besides, for an65

illustration of typical common object patches in robotic settings, Figure 2 shows a few examples from66

MHRI dataset [2]. Those examples show the typical low resolution and high clutter, even in manually67

cropped patches. Our goal is to recognize common objects in this type of realistic views, for which68

we evaluate several descriptors (detailed in the experiments): common hand-crafted features and deep69

learning based features (i.e., final layer outputs from several well known classification CNNs).70

3.2 Incremental Object Learning71

The processing of new incoming object views, either to update the object models or to perform72

recognition, is as follows.73
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(a) (b) (c)

Figure 2: Examples of MHRI data [2]. (a) Manually Cropped and (b) Automatically segmented
patches from a sample object (apple). (c) Interaction types (from left to right: Point, Show and Speak).

Model initialization and incremental update. Given a new object view v and its label l, we74

compute its descriptor dv and create a new cluster C[v̂] with dv as centroid and l as associated label.75

If label l does not exist in the database, l is added to the database initializing a new object.76

If label l already exists in the database, existing clusters evolve and update their centroids (represen-77

tative descriptors), following incremental clustering ideas. The total number of classes is not limited78

but, in order to avoid unlimited growing, the subset for clusters within each class is limited by a79

predefined size. If l has reached this maximum number of clusters, we run an alternating strategy that80

is repeated every n+ 1 updates to a certain label l: 1) For the first n updates to label l, our algorithm81

computes the distances among all clusters associated with label l (Cl), in order to find the closest and82

the furthest pairs among them. To compare two clusters we use the distance between their centroids.83

The closest pair of clusters are merged, updating the centroid and increasing its positive count with84

one. Oppositely, the furthest pair of clusters, receive a negative vote. 2) For the n+ 1 update to label85

l, the cluster with the worst score (i.e., more negative votes) is replaced by the new singleton cluster.86

Additionally, we tested random and minimum distance as another criterion for this cluster reorganiza-87

tion step. But the proposed method gives a better performance (accuracy of 13% against 11% and88

10% respectively), and prevents too much similarity or disparity among clusters from the same label.89

Recognition. To classify a new object view v into the existing classes, we simply follow a k-Nearest90

Neighbor (k-NN) approach (in our tests, k = 3). The distance between current view descriptor dv91

and each existing model cluster is computed, and the view is assigned the label according to the most92

frequent label from the closest k neighbours found.93

4 Experimental Validation94

All our experiments use the Multi-modal Human-Robot Interaction (MHRI) dataset [2]. This dataset95

captures the most common natural interactions for teaching object classes to a robot: Point, Show96

and Speak. It contains clips from 10 users doing 3 types of interaction with 10 objects from a pool97

of 22 objects. Our focus is on exploring incremental learning strategies for the object model part of98

the pipeline proposed together with the dataset. However, during our implementation (built on the99

code provided by authors in [2]) we have also improved their interaction recognition and their target100

object detection modules, as described in the introduction. This improved implementation will be101

released to the community.102

Incremental Learning Module Evaluation: This experiment evaluates the proposed incremental103

learning strategy decoupled from the quality of the data, i.e., we use manually segmented patches104

from MHRI dataset (670 patches from 22 classes, approx. 30 patches per class and 67 patches per105

user). Figure 2(a) shows examples of such patches. We do 10-fold cross validation, each fold keeping106

one user for testing and the rest of users for training. The supplementary material includes detailed107

results with additional baselines and variations. Table 1(a) only shows the most insightful results.108

Model size limit. We considered different cluster size limits (including no-limit). After a cluster-size109

limit of 20, we observed that the accuracy did not improve substantially, and hence it is reasonable to110

implement such limit in constrained platforms.111

Different patch descriptors. We show the best result for hand-crafted features (color histograms112

HCRGB) and for deep learning based features (DenseNet4, output of the Dense Block 4 of pre-113

trained DenseNet [11]). HCRGB provided the highest accuracy, surprisingly at first sight, but it114

can be explained by looking at the MHRI data: objects with distinctive colors and poor texture. All115
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Table 1: Average accuracy for object recognition using different approaches with MHRI data.
Patches: (a) Manually Cropped (clean) (b) Automatically Segmented (noisy)

Incremental k-NN+HCRGB (Ours) 28.0∗ / 31.4∗∗ 9.0∗ / 13.2∗∗

Incremental k-NN+DenseNet4 (Ours) 18.28∗ / 21.17∗∗ 5.5∗ / 5.6∗∗

Offline k-NN+HCRGB 30.2 13.4
Offline SVM+HCRGB [2] 34.8 7.95
Offline CNN (Inception-finetuned) 59.3 17.5

* 50% of data processed by the incremental system. ** 100% of data processed by the incremental system

evaluated descriptors, except HCRGB , fire around high-gradient regions. And the CNNs considered,116

are pre-trained with very different type of images (ImageNet) with wider FOV images, hence most117

learned features probably do not apply in our patches. This just confirms the issues with domain118

change using CNN-based strategies with this dataset already discussed in detail in [2].119

Related offline baselines. The best performing offline baseline is an Inception V3 model [21], pre-120

trained on ImageNet and fine-tuned with the training set of the Manually-cropped patches. This121

is an upper bound for the performance worth showing as reference. However, it is not suitable for122

incremental learning, since the update data we get from a few user interactions is not enough to123

fine-tune further the net. The most significant observation is that our proposed Incremental k-NN124

strategy gets similar performance to an offline k-NN that uses all the data at once. This validates the125

incremental approach and verifies the strategy to limit the cluster size is not harming the performance.126

Validation of the full pipeline: This experiment uses object patches extracted automatically127

from interactions for training and testing. Figure 2(b) shows examples of these automatic patches,128

with significantly worse quality that manual patches. This increases the challenge but brings the129

experiment closer to a system running in the wild. The supplementary material includes more results130

with additional baselines and variations. Table 1(b) shows the most insightful results, discussed next.131

Incremental k-NN. The incremental system we propose is evaluated with a 10-fold cross-validation,132

where each fold corresponds to a user, and set to the best performing configuration from previous133

experiment (HCRGB descriptor and model size limit 20). Besides the challenge from using automat-134

ically segmented patches, note that each user manipulates a different subset of the object pool, i.e., at135

some points for some of the folds (depending on which user data has been fed to the incremental136

system), there were no training examples for some of the test data objects. Since users do not have137

clips with all the objects in the pool, Incremental k-NN needs to process several users (4 in our138

experiments) to reach a reasonable performance. The average accuracy of our incremental k-NN139

approach is again similar to an offline k-NN, but storing a significantly lower amount of data.140

Comparison with offline baselines. Up to our knowledge there is not another available end-to-141

end system of similar characteristics to ours. Therefore, we show as reference the results of the142

same offline approaches as in previous experiment. We can see all approaches suffer a significant143

decrease in performance with respect to what they reached training with Manual patches in previous144

experiment. This is not surprising and confirms the challenging set up we are working with. Our145

incremental approach also suffers a decrease in performance but it is able to outperform the baseline146

of [2] using only 50% of the data. Note that in this case the other offline baselines are not much147

better than our incremental approach, which highlights the challenging data and setup considered and148

leaves open research problems in learning for service robotics.149

5 Conclusions150

This paper presents the first complete approach for incremental object learning using multimodal151

data from natural Human-Robot interaction. The pipeline is based on [2], improving all its stages,152

proposing an incremental learning approach and presenting results on a public database. Our novelty153

is on the integration of several modules that facilitate the use of natural language and gestures for154

incremental robot learning. Our main insights are 1) the domain change is critical in this scenario,155

and 2) although we reach a reasonable performance there are still considerable challenges, justifying156

the relevance of the topic for future research. We believe that the most relevant one is the exploration157

of more sophisticated incremental learning methods, particularly those that are robust to noisy data.158
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