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Abstract

In order to bring robots into our lives, we will need to go beyond supervised learning
on closed datasets to having the ability to continuously expand knowledge. Inspired
by a student learning in a classroom, we present an agent that can continuously
learn by posing natural language questions to humans. Our agent is composed of
three interacting modules, one that performs captioning, another that generates
questions and a decision maker that learns when to ask questions by implicitly
reasoning about the uncertainty of the agent and expertise of the human. As
compared to current active learning methods which query images for full captions,
our agent is able to ask pointed questions to improve generated captions. The agent
trains on the improved captions, expanding its knowledge base. We show that our
approach achieves better performance using less human supervision than baselines.

1 Introduction

Children learn from teachers in an active way: asking questions about concepts that they are unfamiliar
or uncertain about. In doing so, they make learning more efficient – the child who learns exactly
the information they are missing – and the teacher who answers the question instead of needing to
explain many aspects of a concept in full detail. As A.I. becomes more and more integrated in our
everyday lives, be it in the form of personal assistants or household robots [29, 17, 24], we need it to
be able to actively seek out missing information from humans – by asking questions in the form of
natural language which non-experts can understand and answer.

Most existing work on complex scene understanding tasks such as VQA [6, 26, 31, 7] and captioning
[12, 22, 4] has mostly focused on a closed world setting, i.e. consuming the knowledge provided by a
labeled dataset. On the other hand, the goal of active learning is to be able to continuously update
the model by seeking for the relevant data to be additionally labeled by a human [23]. Most active
learning approaches, however, ask the human to provide a full labeling of an example, and the main
challenge is in identifying the examples to be labeled, to ensure annotation efficiency. In our work,
we go beyond this, by endowing the model with the ability to ask for a particular aspect of a label,
and do so in natural language in order to unambiguously identify the missing information.

We focus on the task of image captioning as a proxy task for scene understanding. In order to describe
the image, a model needs to generate words describing the objects, their attributes, and possibly
relationships and interactions between objects. This is inherently a multi-task problem. Our goal is to
allow a captioning agent to actively ask questions about the aspects of the image it is uncertain about,
in a continual learning setting in which examples arrive sequentially. Thus, instead of having humans
provide captions for each new training image, our agent aims to ask a minimal set of questions for
the human to answer, and learn to caption from these answers. We showcase our method on the
challenging MSCOCO dataset [12]. To the best of our knowledge, this is the first time that natural
language question asking has been explored in a continual learning setting with real-world images.
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Figure 1: Improving captions by asking natural language question.

2 Our approach

Our model learns to describe images in a lifelong learning setting by asking questions to the teacher.
This is illustrated in Algorithm 2. Data arrives in chunks. The first chunk Dw has complete ground
truth (GT) i.e. human written captions. We refer to it as the warmup chunk. The agent learns from
the remaining K unlabelled chunks Du = [Du1, Du2, . . . DuK ] with partial supervision from the
teacher. The agent attempts to caption each image in the unlabelled chunks, and decides whether to
replace words with answers obtained by asking questions.

Let w = (w1, w2, . . . wL) denote a caption, I an image, q a question, and a an answer from the
teacher. Captioner - C(w|I) is implemented as a CNN-RNN model [32]. We pretrain the captioner
using MLE with teacher forcing and scheduled sampling on Dw. Decision maker - DM(t|c)
predicts for which word in a caption (time step t) a question should be asked (if at all).This module
conditions on the context c = (c1, c2, . . . cL) computed from the captioner. More details about c
are in Appendix. Asking on the <eos> token is interpreted as "not asking". Question generator -
Q(q|I, ct) is also implemented as a CNN-RNN model and conditions on the context at time t. Q is
trained on a custom dataset derived from VQA2.0 and MSCOCO (details found in the Appendix) and
is not fine-tuned.

Fig. 1 and Algorithm 1 show the agent interacting with the teacher, which consists of two parts:
a QA bot - V (a|I,q) implemented following [26] and a caption scorer composed of BLEU [20],
ROUGE [11], METEOR [2], and CIDEr [28]. We call this the Mix score, or reward, and denote it
by r. Given an image, the captioner produces the caption w0. Let wt be the word for which the
decision module decides to ask a question. The question generator produces a question and the
agent receives an answer a. The agent then replaces word wt in w0 with a and predicts new caption
w1 = (w1 . . . wt−1, a, w

′
t+1, . . . w

′
L), by rolling out the rest of the caption from time step t using the

previous hidden state ht−1 of the captioner and a. Finally the teacher scores both the original and
improved captions. The process can be repeated by asking a second question and replacing another
word at time t′ > t. In general, the agent can ask up to N questions for a single caption. In practice,
we use N = 1 in our experiments.

Algorithm 1 Improve captions by asking
1: procedure IBYASK(I)
2: w0, c0 ← C(·|I)
3: for n = 1 to N do
4: tn ← DM(·|cn−1)
5: q← Q(·|I, cn−1

tn )
6: a← V (·|I,q)
7: wn ← [wn−1

0:tn−1, a, C(·|I, htn−1, a)]
8: rn ← Mix(wn)

9: n∗ = argmaxn r
n

10: return rn
∗
,wn∗

Algorithm 2 Lifelong learning
1: procedure LIFELONG(Dw , Du)
2: pretrain: C, Q, V
3: initialize: MK
4: D ← Dw
5: Du = [Du1, Du2, . . . DuK ]
6: for Duk in Du do
7: Dc ← [ ]
8: for epoch = 1 to P do
9: for I in Dk do

10: w, r ← IBYASK(I)
11: w∗, r∗ ← IBYASK(I, greedy=True)
12: θd ← θd + (r − r∗)∇θd log pθd(t|c)
13: Dc += (w, r,w∗, r∗)

14: D ← filter(Dc, H)
15: train: C on D using L(θc)
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Method H% GT % Sup % Mix [2] C [28] M [2] R [11] B4 [20] B2 [20]
Equal GT - 45.2 % 45.2 % 98.9 91.5 24.7 52.3 28.0 53.4
All GT - 100 % 100 % 101.1 95.3 25.2 52.8 28.5 54.4

Ours 100% 21.8 % 49.9 % 99.4 91.1 24.8 52.6 28.1 54.7
Ours 85% 33.5 % 61.6 % 101.8 94.6 25.3 53.3 29.4 55.8
Ours 70% 45.2 % 73.5 % 102.4 96.0 25.3 53.3 29.4 56.1

Table 1: Evaluation on the Karpathy test split. Our model was trained using a 10% warmup chunk
and 3 unlabelled chunks. Methods see all images at least once for fairness. Note: 100% GT% in
table corresponds to 46% of MSCOCO train captions (See line 73).
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Figure 2: Caption quality on the val split. Both models are decoded greedily. Refer to the Appendix for how
human supervision is calculated. For each plot, supervision is varied by changing the percentage of captions
H% collected by the agent.

Lifelong learning. We now describe how the agent learns from the data obtained via a teacher.
In particular, the agent makes P passes over each chunk. As the agent sees images, it stores the
teacher-improved captions in a buffer Dc and trains the decision maker on the teacher’s rewards.
Because auto-eval metrics are non-differentiable, we trainDM using REINFORCE [25]. We baseline
the reward with the greedy decision reward (r∗)0 (that is, what the improved-caption would have
been had DM sampled greedily), following the self-critical policy gradient [22]. See lines 11-12 of
Algorithm 2. In the general case where N questions are asked, the gradient for the parameters of the
decision maker θd is:

N∑
n=1

[rn − (r∗)n]∇θd log pθd(tn|cn−1), ti > tj for i > j (1)

The agent collects the top m captions for each image seen during learning to distill the teacher’s
knowledge back into C. We choose m = 2 to trade off the amount of data collected and redundancy
in the captions. We allow the agent to “give up" if the improved caption is still bad, and the teacher
writes a new caption. In practice, the agent keeps the top H% of images based on the average caption
reward from the buffer. For the other 100-H% images, the agent is given two GT captions.

Define D as the union of warmup and collected data. We assume the agent has full access to any data
it has trained on in the past. After each chunk, the captioner trains on D according to a joint loss over
collected and GT captions,

L(θc) = −
∑
w

rw log pθc(w|I)− λ
∑
w∗

log pθc(w
∗|I) (2)

where w are collected captions, w∗ GT captions, rw is Mix reward, and λ a tuned hyperparameter.

3 Experiments

We evaluate our approach on the MSCOCO dataset [12]. In Table 3 we evaluate our lifelong learning
setting against training only on GT data. All results are reported using greedy decoding. Our model
was trained with a 10% warmup chunk, 3 unlabelled chunks and varying collect percentage. We
report two baselines: All GT - the same number of captions as our model and Equal GT - fewer total
captions but the same number of GT captions as our model. All models have the same architectures
and hyperparameters and are trained on all 117,843 training images to ensure fairness.
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1.0

GT:  A man in an orange jacket 

talks on his cell phone.

OC: A man in a blue shirt

holding a cell phone.  [1.68]

Q: What color is the man's shirt?

A:    orange, red, yellow

T5C: blue, suit, vest, tie, shirt

NC:  A man in a orange shirt 

talking on a cell phone. [2.29]

GT: A tree with a bunch of red 

bananas next to lots of leaves.

OC: A bunch of red and yellow

flowers on a branch.  [1.13]

Q: What type of plant is this?

A:  banana, cactus, bamboo

T5C:  and, flowers, hanging, 

red, flower

NC:  A bunch of red banana

hanging on a tree. [1.32]

GT: A man windsurfing on an 

ocean with medium sized waves.

OC: A man riding a wave on a 

wave.  [0.67]

Q: What is the person doing?

A:  windsurfing, surfing, 

parasailing

T5C:  riding, surfing, is, flying, on

NC:  A man windsurfing on a 

surfboard in the ocean.  [1.55]

GT: A sign on a wall with a clock 

in the background.

OC: A clock that has a clock on 

it in a room.  [0.92]

Q: What is the word on the 

clock?

A:  smiley face, time, 6:05

T5C:  has, is, reads, says, looks

NC:  A clock that smiley face is 

on a table in a room.  [1.10] 0.0

0.5

0.25

0.75

Figure 3: (best viewed in color) Three positive and one negative example from lifelong learning. T5C is the
top-5 words predicted by the captioner at the time step when the question is asked. Colors in OC indicate the
probability the decision maker asks about that word (scale shown on the right).

We introduce a metric to approximate human supervision effort shown in column "Sup", details can
be found in the Appendix. As compared to training only on GT captions, our lifelong model achieves
1.3 mixed or 0.7 CIDEr higher while using only 45.2% of GT and 73.5% human supervision. Given
the same number of GT captions, our model performs 3.5 mixed and 4.5 CIDEr better than baseline.
These findings are consistent with [13] who showed that training with corrected captions performs
better than purely GT captions. In summary, lifelong learning by asking questions can achieve greater
performance than training only on GT with not only fewer GT captions but less human supervision.

Fig. 2 shows the regimes where learning by asking questions is most effective. The baseline is a
"mute explorer" - a model that is trained in exactly the same lifelong setting as our model but samples
from its own distribution to explore new captions rather than ask questions. We vary the amount of
human supervision by adjusting the percentage of captions H% collected by the agents in the lifelong
setting. Question exploration (QE) outperforms mute exploration (ME) in almost all settings but the
difference is greater when using smaller warmup data. For 1% warmup, QE improves 13.6 CIDEr
over ME (73.7 vs 60.1) but for 10% warmup the largest difference is 1.1 CIDEr (95.8 vs 94.7). This is
likely because with a smaller warmup set, there are still many concepts left unexplored, hence asking
the teacher pays off. Another trend is that QE becomes better than ME as the amount of human
supervision decreases and the agent relies more on its collected captions rather than GT. For 3%
warmup, the CIDEr difference at 8 supervision is 2.1 (90.7 vs 88.6) and at 4 supervision is 4.5 (81.8
vs 77.3). Finally, performance increases with the warmup set size for a constant amount of human
supervision. For 8 supervision QE achieves achieves 93.5 CIDEr in the 10% warmup setting and 86.3
CIDEr in the 1% warmup setting. The reason for this is likely because at 1% warmup, the captioner
is making too many mistakes to fix with only 1 question asked. In summary, asking questions is a
more efficient way to learn from a human teacher than mute exploration. This is especially true at the
low warmup regime and when the amount of human supervision is limited.

Some selected examples are shown in Fig 3. We can see that question asking is able to fix incorrect
concepts in the original caption and retrieve novel nouns and verbs from the teacher. The fourth
example is a failure case where the question generator produces a semantically wrong question and
the QA model returns a nonsensical answer. Interestingly, the reward is higher for the new caption
despite the semantic and grammatical mistakes. This highlights the weaknesses of auto-eval metrics.

4 Conclusion
In this paper, we addressed the problem of active learning for the task of image captioning. In
particular, we allow the agent to ask for a particular concept related to the image that it is uncertain
about, and do not require the full caption from the teacher. Done this way, the learning and teaching
efficiency is shown to be improved on the challenging MS-COCO dataset.

Our work is a step towards a more natural learning setting in which data arrives continuously, and
robots learn from humans through natural language questions. There are many challenges ahead in
making the continual learning model more efficient, and incorporating real humans in the loop.
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Appendix

4.1 Question generator

Method a@1 a@3 a@5 a@10
Baseline 37.8 50.2 55.3 62.7
+CE 45.9 60.2 65.5 72
+PE 49.2 63.9 69.3 75.4
+PE +CE 52 67.2 73 79.4

Table 2: Comparing question generation models using different context inputs. (+PE) with position
encoding, (+CE) with RNN encoding of the caption.

We pretrain the question generator on tuples of image, context and questions. We exploit the fact
VQA2.0 and MSCOCO share images and match answers from QA pairs of VQA2.0 to words in
the captions of MSCOCO to generate training samples. Doing this gives 135,670 training samples.
Context for the question generator consists of: (1) the POS which determines the "question type",
(2) attention weights predicted by the captioner which guide the question generator to look, (3) an
encoding of the caption which provides global context and prevents asking for redundant concepts,
(4) position encoding of the time step. The question generator is trained similarly to the captioner
using MLE with teacher forcing and scheduled sampling. In table 2 we show the accuracy of the
question generator trained using various variables in the context. Accuracy is measured by passing a
greedily decoded question through the VQA module and comparing the teacher’s answers with the
ground truth answer. The baseline is a model trained only with POS and an attention maps as context.
Both position and caption encoding give a boost to the accuracy. Combining both achieves the highest
performance, 14.2% over baseline for the top answer. We use the full model as our question generator
in the experiments.

4.2 Decision maker

Method Mix C B4
No questions 86.4 74.1 22.1
Random 88.3 76.2 22.2
Entropy 88.9 76.5 22.4
Unc. metrics 89.6 77.5 22.5
Unc. metrics learned 90.8 79.3 23.2
Full learned 91.9 80.6 23.7

Table 3: Comparing different decision maker models.

The context for the decision maker consists of (1) distribution over top-k words (2) the POS (3)
an encoding of the caption and (4) entropy and closeness metrics computed from the top-k words
including the cosine and L2 distance between word embeddings. The closeness metrics are motivated
by the fact that the captioner predicts synonyms which increase the entropy but do not suggest that
the model is uncertain. Table 3 ablates different decision makers. The baseline is simply a pretrained
captioner model evaluated without asking questions. For the other settings, a pretrained captioner
is paired with a decision maker and question generator. The agent is evaluated by asking a single
question and rolling out the caption. Entropy is picking the time step with the highest top-k word
entropy. Unc. metrics includes entropy and closeness metrics. Unc. metrics learned contains a MLP
to predict the logit. Full learned includes POS and an encoding of the caption. Both learned models
are trained using RL on a single chunk of continual learning data. As seen from table 3, the full model
gives a 6.5 CIDEr improvement over no questions. Picking the time step with maximum entropy
is not very effective, only giving 0.3 CIDEr over random. Adding the closeness metrics yields 1.0
CIDEr improvement over maximum entropy. In all cases, learning improves performance, with the
best learned model achieving 3.1 CIDEr more than the best non-learning model. We use the full
context model as our decision maker in experiments.
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Task Avg. time (s) Std. (s) Time ratio
CAP 34.55 23.11 1.0
SCO 6.62 2.20 5.13
ANS 7.74 3.87 4.51

Table 4: Human time for tasks: captioning an image (CAP), scoring a caption of an image (SCO),
and answering a question about an image (ANS). Time ratio is calculated relative to CAP. N = 22
humans were surveyed for a total of nc = 220 captions, nq = 550 questions, ns = 550 scores.

4.3 Evaluation

The goal of active learning is to maximize performance on the test set while minimizing human
supervision. We adopt this philosophy and argue that for humans-as-teachers systems, it is crucial
to measure the human cost of providing feedback and make sure that it’s cheaper than getting full
data labels. For our experiment, a human teacher has three possible tasks given an image: produce a
full caption, answer a question, score a caption. We take time taken to complete a task as a proxy
to human effort. Table 4 shows the average amount of time taken by humans to do each task.
Specifically, it takes on average 5.13 and 4.51 times longer to caption than score a caption or answer a
question. We normalize the cost of each task to caption scoring. During lifelong learning, we charge
the agent a single unit of human effort for each caption scored, 5.13 for full caption labels and 1.14
for questions answered. For full disclosure, we include the assumptions in how we evaluated our
model. We filtered out questions that were repeats. We assumed no cost for answers from the teacher
because we are using synthetic teacher noisier than a human. Finally, we assume the agent has some
way to choose the best caption from three alternatives, for example by training a discriminator. We
leave relaxing these assumptions to future works.

4.4 Dataset

We used Karpathy splits containing 117,843 training, 5K validation and 5K test images for training
the captioner [9]. We randomly split the training set into warmup and continual learning portions.
For each image in the warmup set, there are 5 ground truth captions. Each image in the continual
set has 2 captions, collected by the agent. We used the Stanford NLP parser to get the ground
truth POS labels [16]. The synthetic teacher was trained on the VQA2.0 dataset [1]. We followed
a simplified implementation of [26] using a multi-answer binary cross entropy loss function. Our
model achieved 64.2% on the VQA2.0 val without ensembling. yes/no questions were removed in
the actual implementation. Image features are precomputed from ResNet-101 trained on ImageNet
[5] [8]. The vocabulary sizes for the captioner, question generator and VQA were 11253, 9755 and
3003 respectively.

4.5 Implementation details

All modules are trained with batch size 20. Image features are precomputed from ResNet-101 trained
on ImageNet [5] [8]. In particular from the conv4_23 layer with adaptive pooling resulting in 14x14
spatial dimensions and 2048 channels. Gated reccurrent units (GRUs) were used for RNNs [3].
The captioner and question generator were trained using ADAM with a learning rate of 2e− 4 and
with learning rate scheduling and scheduled sampling [10]. The VQA module was trained using a
learning rate of 1e− 3 and word embeddings initialized with GloVe6B trained on Wikipedia2014
and Gigaword5 [21].

4.6 Related work

Image captioning, VQA, VQG. Our approach touches on each of these multimodal tasks. A popular
model for image captioning is CNN-RNN with attention first proposed by [32]. Recent works have
extended captioning models by fine-tuning using policy gradient [22] and [15], using generative
models to increase diversity [30], and introducing a discriminator to make captions agree more with
human judgement [4]. However, all works to date have approached image captioning from a closed
dataset setting. Visual question answering in the real world domain remains a generally unsolved
problem [7]. Recent works have exploited attention based models, top-down and bottom-up attention,
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data augmentation and more to achieve state of the art on the VQA2.0 dataset [26]. Visual question
generation is a recently proposed task closely related to VQA. Some recent works include [19] [14].

Active learning. In active learning, the agent selects unlabelled data to label from an oracle using
various expected improvement metrics such as uncertainty sampling, query by committee, expected
model change in order to maximize performance on the test set [23]. Our work differs from active
learning because we don’t directly optimize over which next sample gives the most improvement to
the model, instead we ask natural language questions to explore novel concepts. The teacher only
provides an answer to a question, rather than a caption which is a much cheaper form of supervision.
However, learning by asking comes with its own challenges: specifically asking intelligent questions
and reconciling the teacher’s answer. Future works can explore combining active learning with
learning by asking by also optimizing over the best next image to ask about.

Human in the loop captioning Human in the loop captioning has been studied [13]. Specifically,
in [13] the captioner poses candidate captions to human teacher who identify incorrect phrases
and corrects them. The agent then finetunes itself on the corrected captions. While both [13]
and our work utilizes human feedback, our works differ in that we actively ask natural questions
to learn new concepts and make corrections while [13] presents the captions to the teacher for
correction. Actively asking questions requires us to introduce the decision maker module which
must reason about the agent’s uncertainties and the teacher’s expertise. Furthermore, we present a
lifelong learning training regime where the agent starts with a weak captioner that improves over time.

Learning by asking questions [18] explores question asking for the VQA task, making their work
closer to traditional active learning where image and question are the unlabelled data and answers are
received from an oracle to form novel training pairs. Our work differs by introducing question-asking
as a surrogate task to the main task, in our case captioning. Furthermore, [18] works in a much
simpler, synthetic environment with questions represented as CLEVR programs rather than natural
languages. [18] does not require the agent to learn when or if to ask a question. [33] explores question
asking for visual recognition. A model is trained to pose template questions to a teacher to learn
about objects, attributes and relationships in a scene. [33] is also limited to training in synthetic
environments with a limited set of objects and relationships and posing template questions. [27]
explores using question generation as a way to explore new object classes in the context of image
classification. However, they do not retrain their classifier to continually improve in a lifelong setting.
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