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Abstract

Humans often correlate information from multiple modalities, particularly audio
and visual modalities, while learning as well as interacting with the external envi-
ronment. In this learning mechanism, they also acquire the capability to interpret
the information about missing modalities from the available modalities. Imparting
these capabilities to machines might help build better Human-Machine interfaces
and interactions. In this paper, we consider the task of multi-modal sentiment
classification, using the audio and visual modalities, under the scenario where
both the modalities are available during training but only one modality is available
during test. We propose a novel model combining deep canonical correlation
analysis (DCCA) with cross-modal autoencoders. These autoencoders try to recon-
struct the representations corresponding to the missing modality, using the DCCA
transformed representations of the available input modalities. Experiments on the
CMU-MOSI and CMU-MOSEI datasets for sentiment classification on Youtube
videos show the effectiveness of our proposed model.

1 Introduction

Speech and vision are two powerful modalities which are often correlated by humans to learn,
understand and interact with the external environment. Human auditory perception may be grounded
by vision and in turn, the visual understanding may be grounded by auditory cues. This grounding
not only helps humans correlate information across modalities but also helps them to interpolate the
missing modality from the available modality [1, 2, 3]. We hypothesize that this observation can help
classification systems to perform better when one of the modalities is missing during test conditions.

In this paper, we consider the task of multi-modal sentiment classification from videos which have
both visual and audio modalities1 [4, 5, 6, 7]. We consider the problem where both modalities are
available during training but only one modality is available during testing. We specifically examine
the performance of deep canonical correlation analysis (DCCA) [8] on sentiment classification task.
DCCA uses deep neural networks (DNN) to encode representations of the two modalities into a space
where they are highly correlated. As a result, the encoded representation of a single modality carry
information from the other modality as well. We propose a novel DCCA model which consists of
two additional decoder DNNs. These decoders try to reconstruct the representations corresponding to
a single modality, using the encoded representation of the available input modalities. The additional
decoder in our model resembles a cross-modal autoencoder (CAE), so we refer to the proposed model
as deep canonically correlated cross-modal autoencoder (DCC-CAE).

1We will use modality and view interchangeably in this paper.
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Figure 1: DCCA Figure 2: DCCAE Figure 3: DCC-CAE

2 Related Work

Modeling correspondence between multiple modalities such as vision, language and speech has
attained huge attention in recent times [9, 10, 3]. As a result, interesting and new problems such
as visual question answering [11, 9, 12, 13], object discovery by multi-modal dialogue [9, 14] and
text-to-image generation [15, 16, 17] have emerged. Most of these approaches are at the intersection
of vision and text. Only a few studies have explored speech modality in conjunction with image and
text [10, 18, 19, 20, 21]. In literature, the speech and visual modalities are jointly mapped onto a
common representation space, where the two modalities are not maximally correlated. Moreover,
these approaches require all the modalities considered during training to be available during testing.
In this paper, we will consider models based on DCCA [8, 22] which can perform even in the absence
of an input modality. To the best of our knowledge, there is no prior work which explores DCCA-
based approaches combining speech and vision. While DCCA-based models proposed have shown
improvements in the representation of ASR transcripts [23, 24], we show that the proposed cross-
modal decoder based DCCA architecture gives better audio-visual representations and sentiment
classification accuracies. The main contribution of this paper is (a) coupling audio and video in
DCCA framework and (b) improved performance of DCC-CAE for sentiment classification.

3 DCCA-based Approaches

DCCA: Canonical Correlation Analysis (CCA) [25] is a statistical technique for finding a linear
projection for two views into a common space where they are maximally correlated. DCCA (see
Figure 1) is a non-linear version of CCA, in which both input views are passed through DNNs, and
are then correlated with a CCA loss [8]. In Figure 1, (X1, X2) denote the representations of the two
modalities corresponding to the same input data. DNN-1 and DNN-2 are used to obtain the non-linear
transformation (X1

e , X2
e ) of each view (X1, X2). During training, (X1 and X2) are extracted from

the training data, and then used to learn (DNN-1, DNN-2) such that canonical correlation between
the transformed representations is maximized. Thus, the objective to be optimized for DCCA is:

max
θ1,θ2

CCA(X1
e , X

2
e ); X1

e = g1(X1; θ1), X2
e = g2(X2; θ2)

where, g1, g2 denote the nonlinear transformations of DNN-1 and DNN-2, respectively. θ1, θ2 refer
to the weight matrices of DNN-1 and DNN-2, respectively. CCA refers to the CCA cost function.
The trained DNNs can be used to obtain the transformed representations carrying information from
both the views, using any one of the input views.

DCCAE: DCCAE [22] includes two additional components in a DCCA model. Apart from maximiz-
ing the correlation between the input views, DCCAE has the additional objective of reconstructing
the input representations from the encoded vectors (X1

e and X2
e ). As shown in Figure 2, DCCAE

consist of two autoencoders, and the objective to be optimized is:
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θ1e ,θ
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where, g1e , g
2
e denote the nonlinear transformations of the encoders DNN-encoder-1 (DNN-E1), DNN-

encoder-2 (DNN-E2), respectively. g1d, g
2
d denote the transformation of the decoders DNN-decoder1
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(DNN-D1) and DNN-decoder2 (DNN-D2), respectively. θ1e , θ
2
e , θ

1
d and θ2d refer to the weight matrices

of DNN-E1, DNN-E2, DNN-D1 and DNN-D2, respectively. Here, DNN-D1 is used to reconstruct
view-1 which is encoded by DNN-E1. Similarly, DNN-D2 is used to reconstruct view-2 which is
encoded by DNN-E2. X1

d and X2
d refer to the reconstructed versions of X1 and X2, respectively.

3.1 Proposed Model: DCC-CAE

The proposed DCC-CAE model is an extension to DCCAE. As shown in Figure 3, DCC-CAE is
similar in structure to DCCAE except that a single input view is reconstructed by both the decoders.
Let us consider the case when both view-1 and view-2 are available during training, but only view-2
is available during testing. While training, the networks are trained to reconstruct view-1 by both
the decoders i.e., DNN-D1 and DNN-D2. Thus the objective to be optimized for DCC-CAE gets
modified as:

min
θ1e ,θ

2
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d,θ
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d

− CCA(X1
e , X

2
e ) +

∥∥(XN −X1
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1
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1
d), X

2
d = g2d(X

2
e ; θ

2
d), N = 1,

when we test for view-2. Here, XN denotes the view not available during testing. g1e and g2e , as
earlier, denote the nonlinear transformations of the encoders DNN-E1 and DNN-E2, respectively.
g1d and g2d denote the transformation function of the decoders DNN-D1 and DNN-D2, respectively.
Here, it is to be noted that DNN-D, which takes as input the encoded version of view-2 (i.e., X2

e ),
has to reconstruct view-1 while DNN-D1, as in DCCAE, is used to reconstruct view-1 from the
encoded version of view-1 (X1

e ). X1
d and X2

d refer to the reconstructed versions of X1 obtained from
DNN-D1 and DNN-D2, respectively.

This approach of training not only ensures maximum correlation between the two views but also
encourages the network to project both views into a space which is more inclined towards the missing
view. During testing, this helps DCC-CAE to better estimate the missing view, compared to DCCAE.

4 Experiments and Results

We evaluate the performance of proposed DCC-CAE, in comparison to DCCA and DCCAE, by
considering two datasets, namely, CMU-MOSI [26] and CMU-MOSEI [27]. CMU-MOSI consists
of 93 movie review videos segmented into 2199 clips/utterances. CMU-MOSEI consists of 2550
multi-domain monologue videos segmented into 18350 clips/utterances. Both, CMU-MOSI and
CMU-MOSEI datasets are annotated with utterance-level sentiment labels in the range [−3, 3]. In this
work, we perform binary sentiment classification in which labels [−3, 0] are considered as negative
and (0, 3] are considered as positive sentiments. The train, validation and test split for CMU-MOSI
and CMU-MOSEI datasets are utterances from 52, 10 and 31 videos, and utterances from 2100, 250
and 200 videos, respectively.

The visual modality (V) is represented with features (100-dimensional) extracted, at clip-level, using
FACET framework and OpenFace toolkit [28, 29]. The audio modality (A) is represented with
features (384-dimensional) extracted, at utterance-level, using openSMILE toolkit [30].

4.1 Results

For experimental validation of the sentiment classification task, we will consider both, audio (A)
and video (V) modalities while training, but consider either A or V during testing. The modality
available during testing is passed through the corresponding trained DNN-encoder, and the output of
the DNN-encoder is considered as the projected view. The projected representations of audio and
video are represented as Ap and Vp, respectively. The projected views (Ap and Vp) are concatenated
with their original views to obtain the concatenated views ([A,Ap] and [V,Vp]). It is to be noted that
the concatenated views are obtained by considering only a single modality (either A or V) during
testing. We use bidirectional LSTM-RNN, as explained in [7] for sentiment classification, to label
the clip/utterance level sentiment.

Table 1 shows the sentiment classification performances in terms of % accuracy (Acc.) and F-Score
(F1) obtained for CMU-MOSI and CMU-MOSEI datasets. It can be observed that the projected
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Table 1: Multi-modal sentiment classification performance for a single test view.

Audio Video

MOSI MOSEI MOSI MOSEI

Acc. F1 Acc. F1 Acc. F1 Acc. F1

– A 50.6 50.0 59.4 58.0 V 53.8 53.5 59.6 59.5
DCCA Ap 50.7 50.2 59.6 58.2 Vp 53.9 53.7 59.7 59.8
DCCA [A,Ap] 52.8 53.0 63.5 63.2 [V,Vp] 55.7 55.9 64.1 64.2

DCCAE [A,Ap] 54.3 54.1 64.7 64.5 [V,Vp] 57.2 57.1 65.3 65.4
DCC-CAE [A,Ap] 56.2 56.5 66.4 66.1 [V,Vp] 59.4 59.3 67.3 67.5

Table 2: Multi-modal sentiment classification performance on CMU-MOSI dataset, when both,
audio and visual, modalities are available during test.

DCCA DCCAE DCC-CAE
[A,V] [A,Ap,V,Vp] [A,Ap,V,Vp] [A,Ap,V,Vp]

Acc. 56.1 56.4 58.3 60.8
F1 56.3 56.6 58.5 61.0

views Ap and Vp obtained using DCCA did not result in significant improvements in performance
over the original representations A and V, respectively. Similar observations were also made for
the projections obtained from DCCAE and DCC-CAE. However, the concatenated views ([A,Ap]
or [V,Vp]) obtained using each of the DCCA-based models give significant improvements over the
original representations A and V, while DCC-CAE giving the best performance. For the audio only
view, DCC-CAE when compared with DCCA and DCCAE, achieved an absolute improvement
in Acc. (F1) of 3.4% (3.5) and 1.9% (2.4) on CMU-MOSI, and 2.9% (2.9) and 1.7% (1.6) on
CMU-MOSEI datasets, respectively. Similarly, for the video only view, DCC-CAE achieved absolute
improvements in Acc. (F1) of 3.7% (3.4) and 2.2% (2.2) on CMU-MOSI, and 3.2% (3.3) and 2.0%
(2.1) on CMU-MOSEI datasets, when compared with DCCA and DCCAE, respectively, .

We also observed that representations obtained from our DCC-CAE model give a better performance
compared to the audio-video cross-modal sequence-2-sequence models [31]. In [31] the entire
video context was used for training the cross-modal sequence-2-sequence models for extracting
representations for sentiment classification on the CMU-MOSI and CMU-MOSEI datasets. Our
DCC-CAE model does not use the context from adjacent utterances and still achieves a better
sentiment classification performance. In addition to the results obtained from a single view, Table 2
provides the sentiment classification performance on CMU-MOSI dataset, when both audio and visual
modalities are available during test. It can be observed that using representations from the DCCA-
based models improve the performance over the model considering the original representations.
Proposed DCC-CAE model outperforms other DCCA models even when both audio and visual
modalities are available.

5 Conclusion

In this paper, we proposed a novel model, called DCC-CAE to address the task of multi-modal
sentiment classification under the scenario of missing modalities during test. Our model combines
deep canonical correlation analysis (DCCA) with cross-modal autoencoder. The training objective of
the model not only ensures maximum correlation between the two modalities but also encourages the
model to project both modalities into a space which is more inclined towards the missing modality.
Experimental results on two datasets show the effectiveness of the proposed model. DCC-CAE
achieved an absolute improvement in accuracy of around 3% over DCCA, and around 2% over
DCCAE when the video modality is missing. Similarly, an improvement in accuracy of around 4%
over DCCA and around 2% over DCCAE is achieved by DCC-CAE, when the audio modality is
missing. DCC-CAE model performs better than DCCA and DCCAE even when both the modalities
are used in test.
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Appendix

Datasets

CMU-MOSI: CMU Multi-modal Corpus of Sentiment Intensity and Subjectivity Analysis (CMU-
MOSI) dataset consists of 93 movie opinion related videos collected from Youtube. These 93 videos
are segmented into 2199 clips/utterances. In this work, train, validation and test set details are as
follows:
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• Train set: 1284 clips from 52 videos
• Validation set: 229 clips from 10 videos
• test set: 686 clips from 31 videos

CMU-MOSEI:CMU Multi-modal Opinion Sentiment and Emotion Intensity (CMU-MOSEI) dataset
consists of 2550 multi-domain monologue videos collected from Youtube. These videos are seg-
mented into 18350 clips/utterances. Train, validation and test sets considered in this work are as
follows:

• Train set: 15529 clips from 2100 videos
• Validation set: 1257 clips from 200 videos
• test set: 1564 clips from 250 videos

Representation of Audio and Visual Modality

Audio Modality: It is represented by a set of 12 high level descriptors (HLDs) extracted from
16 low level audio descriptors (LLDs). LLDs include acoustic features such as voice probability,
Mel-frequency cepstral coefficients (MFCCs), pitch, RMS energies and their corresponding delta
regression coefficients. The HLDs carry more relevant information about the sentiments and emotions
expressed in the utterance as compared to the LLDs. The HLDs being the higher order statistics of
the LLDs, the dimension of the audio representation remains same (i.e. 384) for all utterances. We
used openSMILE toolkit to extract the above mentioned audio features.

Video Modality: Most of the videos in the considered datasets are focused on a single person
speaking to the audience through a close-up camera. Therefore, the features extracted from the
person’s face are used to build representations for the visual modality. The pre-computed features
comprise of two sets. Set1 captures indicators of emotions, viz. anger, contempt, disgust, fear, joy,
sadness, surprise, frustration and confusion, indicators of facial muscle movements and 20 facial
action units. Set2 contains estimates of head position and rotation, and other facial landmarks.
These features are extracted by the FACET framework and OpenFace toolkit. These features were
originally extracted at a frame level, each video having 30 frames/second. To obtain utterance level
representations, we averaged these features over an utterance and normalized them using statistics
obtained over the training set.

DCCA-based Models Configuration

DCCA model: Each encoder (i.e., DNN-1 and DNN-2) consists of 3 hidden layers. Each hidden
layer consists of 500 hidden units. ReLU activation function is used for the hidden layers. The output
layer of each encoder has 10 units with linear activation function.

DCCAE model: Each encoder (i.e., DNN-E1 and DNN-E2) and decoder (DNN-D1 and DNN-D2)
consists of 3 hidden layers. Each hidden layer consists of 500 hidden units. ReLU activation function
is used for the hidden layers. The output layer of each encoder has 10 units with linear activation
function. The output layer of the decoder also have linear activation.

DCC-CAE model: Each encoder (i.e., DNN-E1 and DNN-E2) and decoder (DNN-D1 and DNN-D2)
consists of 3 hidden layers. Each hidden layer consists of 500 hidden units. ReLU activation function
is used for the hidden layers. The output layer of each encoder has 10 units with linear activation
function. The output layer of the decoder also have linear activation.

Training: All the DCCA-based models are trained using Adam optimizer with a batch size of 10. All
models were trained for 100 epochs with a dropout of 0.4 and a patience of 4. The hyperparameters
such as learning rate, momentum, learning rate decay parameter etc are tuned using the validation
data for each model on each dataset.
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