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Abstract

Learning high-quality representations for multi-modal data with a shared underly-
ing meaning is a key building block for cross-modal information retrieval. Further,
hard negative mining has been shown effective in forcing models to learn discrimi-
naitve features for accurate retrieval. In this paper, we present a new technique for
hard negative mining for learning visual-semantic embeddings, with an adversary
that is learned in a min-max game with the cross-modal embedding model. The
adversary exploits compositionality of images and texts and is able to compose
harder negatives through novel combination of objects and regions across different
images for a given caption. We find that our approach leads to higher scores
across-the-board for all R@K based metrics over the previous state of the art.

1 Introduction

Image-caption and caption-image retrieval [6} 5| 4. [7] require multimodal learning to find the under-
lying semantic association of data from different modalities while discarding irrelevant, superficial
differences in statistics of the modalities. Such cross-modal association models typically have a
contrastive learning objective that tries to separate observed similar cross-modal data pairs from
dissimilar ones. The dissimilar pairs can be constructed in any way, for example by randomly
sampling, i.e. noise contrastive estimation (NCE) [3} 9]]. Simple heuristics used in NCE typically
produce very dissimilar pairs, as learning progresses, the model learns to correctly separate similar
from very dissimilar pairs, and useful learning signals become sparse. This suggests the need for
hard negative examples as noted by others [4, [7].

This work explores adversarial negative mining for cross-modal retrieval between images and captions.
We start by exploring a straightforward application of a generic exemplar-based adversarial search
method [1]] as a baseline. We then exploit the compositionality of images and build out-of-sample neg-
atives that are not in the observed dataset. Our compositional adversary deconstructs some observed
images into parts and selects some of the parts from potentially different images to reconstruct a new
datum that does not necessarily exist in the training set, but fools the contrastive learning model as
much as possible. This compositional approach yields harder negatives than previous heuristics and
exemplar adversarial approaches and improves over the state-of-art image caption retrieval method,
the Stacked Cross Attention Network (SCAN) model [[7].

2 Background

Cross-Modal Retrieval. Given a query, the retrieval task is to rank a set of candidate answers
according to relevancy and select the one or more top ones. Typically the measure of retrieval quality
is recall at K (RQK), i.e. the fraction of queries for which the correct candidate is among the top K
selections. For caption retrieval given an image, this amounts to picking the most accurate caption
for a given image query from a set of captions (image-caption retrieval). Conversely, when the
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query is a caption then the task is to retrieve the most relevant image(s) from a database of images
(caption-image retrieval).

To formalize the problem, we assume that there is a joint distribution of matching image-caption pairs,
the positive distribution, and our training set of image-caption pairs D = {ix, ¢ }5_; is a sample
from this distribution. We refer to these pairs as positive sample points and other pairings not from
the true positive joint distribution as negative samples —i.e. a random pairing of image and caption.

Given a similarity scoring function, s(i, ¢), that accepts an image-caption pair as input, learning
for cross-modal retrieval aims to increase similarity of positive pairs while decreasing similarity of
negative ones. This can be posed as minimizing a contrastive objective that assigns higher scores to
positive examples while assigning lower scores to negative ones. So a triplet contrastive loss can be
formulated as: L;. = Z,iv la — s(ik, ck) + s(ik, ¢},) | +. Here « is a margin, |.| 1 denotes clipping
below at zero, ¢}, is some other caption not corresponding to i, (forming a negative pair (ix, c})). A
similar loss, L.;, can be formulated by replacing images with a sampled one — i.e. ;.. In fact, these
two objectives could be combined together by taking the sum of L;. and L; as the training objective.

Hard Negative Examples. The positive examples are readily available from the training set, but the
choice of negative examples ¢}, and 7}, are a design choice. Random sampling in NCE is unlikely
to yield hard negatives, and as learning progresses it becomes even increasingly harder to pick a
negative that contributes sufficient gradient, causing slow convergence.

If learning terminates prior to observing a sufficient number of hard negatives, the resulting model
would do poorly in ranking hard examples. Because the positive and easy negatives do not sufficiently
constraint the model decision function, i.e. there are too many features different between positives and
easy negatives, and picking up any of the differences would satisfy the training objective. However,
by presenting hard negatives, the model has to learn the most discriminative features for retrieval.
Hence, the strategy for picking hard negatives is crucial here.

VSE++ and exemplar-based negatives. VSE++ [4] is an improvement of visual semantic embed-
dings by Kiros et al. 6], and was the previous SOTA for image-caption retrieval before SCAN [7] was
proposed. VSE++ introduced hard negatives as an alternative to randomly sampling easy negatives.
These hard negatives are taken to be the maximum violating datum over the mini-batch for a given
training query cg, i.e. an image from the current minibatch that is not 75, but yields the largest L;
when plugged in as negative i/ . In this sense, VSE++ uses an exemplar based hard negative mining,
with an adversary that is not parametrized by a model but explicitly enumerates over a candidate set
and picks the hardest. This limits the candidate set to be the mini-batch and hence limits the hardness
of the negatives. Contrary to the local candidate set in VSE++, ACE [1] amortizes the search for
maximum violating datum by an inference network that learns a categorical distribution over any
candidate set conditioned on a query. Although its search is no longer exact, it considers a much
larger candidate set. In our case, this set can be taken to be all training data of the other modality,
hence this global exemplar search in ACE can potentially find harder negatives than the local hard
negatives in VSE++ and in Sec. 4] we demonstrate the benefit of ACE negatives over VSE++.

Stacked Cross Attention Networks (SCAN). We now briefly explain the key formulation details of
SCAN [7]], as we build our compositional adversary method on top of it.

VSE++ treats an image as a whole and extracts one feature vector for a single image, which is then
used in computing similarity with any given sentence embedding. Stacked Cross Attention Networks
(SCAN) [7]] instead computes a similarity by taking into account the alignment and compatibility of
parts in the image (objects) with parts in the caption (words).

To do so for a given image I and sentence 7', SCAN uses Faster R-CNN [10]] to extract multiple feature
vectors, V' = {wvy }}_,, corresponding to objects in the image; and extracts (context-dependent) word
vectors, S = {el}f;p using a GRU-RNN, where v; and e; have the same dimentionality. For
caption-image retrieval, it then computes an caption-dependent representation of an object region
k by dot-product attention between the object feature v and all word features e;’s in the caption,
yielding vy. This step allows SCAN to approximately align each object k with the corresponding
word(s) for it. The dot product attention uses a modified cosine similarity between image region and
word, i.e. S = h(vg - €;), where h consists of rectification at zero and normalization, details can
be found in [7]]. SCAN then computes the relevance of this object region k£ given the caption as the
cosine similarity between the original object feature vy and the caption-dependent object feature v,
R(vy, Ux). If an object is mentioned by a word in the caption, then the cross attention softmax will



be peaked at one word that semantically describes the object, allowing the resulting caption-depdent
object feature to be very close to v;,. However, if an object is not mentioned, then the cross attention
is flatter across words, hence the resulting representation will be some average of many embedding
vectors, resulting in smaller cosine with vy. Finally, the similarity for image I and sentence 7" is

either S*V9(1,T) = 1/N Zgzl R(vy, Ux) or when considering the minimum classification error
formulation a log sum exponential loss is used as, S“SE = log(Sr_, exp(Aa(R(vy, o))"/ >2 [].

3 Method

SCAN still selects one observed datum (from the minibatch) as a negative sample, so it still uses
an exemplar-based negative. Our approach, on the other hand, aims to compose a new sample by
piecing together parts of different data items from the current minibatch. Note that we do not actually
rebuild the image in pixels, but only find a set of image features that would correspond to a new
image whose object detection regions correspond to this set of features. Because the set of possible
negatives produced this way contains any original data items, the set of negative sample candidates
that SCAN considers is a (small) subset of what our method searches over, hence our compositional
adversary is potentially able to produce richer and harder set of negatives.

Formally, each image ¢ in a minibatch of size IV is composed of image features over n regions. Let
Vi = {vi1, .-y Viks .-, Vin }, be the set of image features for image i. Now, let V' = Uf\il V;, be the
union over the sets of image features in the minibatch. Then given a caption j with m words, the goal
of the compositional adversary is to sample one image region feature v;;; for each word [ in caption j.

We do so by an amortized inference neural net which takes as inputs the caption word features, {e; },
and produce a categorical distribution P;(.|¢, {e;}) over |V| regions in the minibatch for each word [,
where ¢ denotes the parameter of the neural net. Sampling from those categorical distributions and
collect the corresponding regions form a negative example I’ = {v;}. Note that, because the S*"9
just considers a set of object region features, we do not need to construct I’ in pixels.

Using 6 to denote the SCAN model parameters, then 6 and the compositional adversarial miner’s
parameter ¢ are learned in a min-max game:

minmax Sp" (1, T)— < Sg"(I',T) > p(r|1,9) M

To update the adversary, due to the non differentiable sampling step, we use the REINFORCE gradient
estimator for ¢. Crafting a negative sample through this process allows the main embedding model to
attend to every image region in a mini-batch for every word in the caption. Given sampled I’, # can
be updated by gradient descent.

False negatives. When the hard negative is actually a legitimate candidate for retrieval, it is a
false negative. Asking the objective to separate a positive example pair and a false negative pair
is meaningless at best where gradient cancels, and is harmful at worst, as the model could overfit
to irrelevant differences. Exactly which failure mode it leads to depends on the smoothness of the
model, but neither is desirable. Hence to avoid false negatives, we mask out image features from the
k-th image when using the k-th caption. Intuitively, without masking the generator may aggregate a
set of image features to produce a negative sample that is very close if not exactly the same as k-th
image, a.k.a a false negative.

4 Experiments

We perform experiments for both image and caption retrieval on the MS-COCO dataset [8, 2]. To
train our VSE++ we adopt all settings from [4] while to train the SCAN model we adopt all settings
from[[7]. As shown in Table[T] for caption retrieval, ACE improves R@1 by 0.9 and R@10 by 1.7
compared to VSE++. On the SCAN model, we find that applying our compositional hard negative
mining strategy is roughly as effective as the performance gain from going from VSE++ to SCAN on
caption retrieval. In fact, the compositional hard negatives result in improvements over the SCAN
model on every retrieval metric for both caption and image retrieval task, highlighting the importance
of composing harder negatives rather than simply taking the hardest example in a minibatch. We
report the sum over all recall scores, both image, and caption, and R@1 in particular in Fig[I]and
observe that harder negatives as proposed through our approach achieves higher recall scores from
fewer samples and is thus more sample efficient.



Table 1: MSCOCO results

Method Caption Retrieval Image Retrieval
R@1/R@5/R@10 | R@1/R@5/R@10
VSE 43.4/75.7/85.8 31.0/66.7/79.9

VSE++ (VGG-19)

43.6/74.8/84.6

33.7/68.8/81.0

ACE VSE++ (VGG-19) 44.5/75.4 /86.3 34.6/69.1 /81.8
VSE++ (ResNet + Attention) 64.7/93.0/97.2 50.0/83.8/92.4
SCAN (number from [7]) 67.5/92.9/97.6 53.0/85.4/92.9
SCAN + Compositional ADV 70.5/94.8/98.3 53.7/85.7/93.6

R@1 for Image Retrieval R@1 for Caption Retrieval
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Figure 1: Performance of VSE++, SCAN models with and without ACE. Left: Sum of (R@1, R@5, R@10)
for caption and images. Centre: R@1 Caption Retrieval. Right: R@1 Image Retrieval.

5 Conclusion

To summarize, we propose two schemes for hard negative mining for cross-modal embeddings. First
we straightforwardly apply ACE for exemplar-based negative mining for before proposing a novel
compositional adversary, which composes an unseen sample from features of observed data. We
empirically validate the utility of our approach and observe improvements over the previous state of
the art methods VSE++ and SCAN.
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