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Abstract

We propose a model that learns to perform zero-shot image classification from
natural language descriptions by using a meta-learner that is trained to produce a
correction to the output of a previously trained learner. The model consists of two
modules: a task module (learner) that supplies an initial prediction, and a correction
module (meta-learner) that updates the initial prediction. The correction module is
trained in an episodic approach whereby many different task modules are trained
on various subsets of the total training data, with the rest being used as unseen data
for the correction module. The correction module takes as input a representation
of the task module’s training data so that the predicted correction is a function of
the task module’s training data. The correction module is trained to update the
task module’s prediction to be closer to the target value. This approach leads to
state-of-the-art performance for zero-shot classification on natural language class
descriptions on the CUB and NAB datasets.

1 Introduction

The ability to solve a task without receiving training examples – zero-shot learning – is desirable. We
as humans can learn new tasks from descriptions of the tasks, as we learn from reading encyclopedia
entries, manuals, handbooks, textbooks, etc. We propose a model that learns a correction on
predictions in the zero-shot setting, based on the training data set used to generate the initial prediction.
Hence, our model is called Correction Networks. The intuition for our model is that a zero-shot query
sample that is different from samples in the training data will require a different correction than a
zero-shot query sample that is similar to samples in the training data.

Correction Networks update the predictions based on the training data. This updated prediction is
trained to be closer to the target value than the original prediction. Correction Networks consist of
two modules: a task module that supplies an initial prediction, and a correction module that provides
a correction to the initial prediction. The task module is the learner and the correction module is the
meta-learner. The final prediction is the task module’s initial prediction combined with the correction
module’s correction. This method is illustrated in Figure 1. The prediction of the meta-learner is used
to modify the output of the learner.

Our approach is for zero-shot learning while previous meta-learning approaches focus on few shot
learning and require a few samples. Another novelty is that the correction module, the meta-learner,
takes as input the dataset used to train the task module. Correction Networks are independent of the
representation of the task module. Existing models that provide predictions can be treated as task
modules. One novelty is that the correction module, the meta-learner, also takes as input the dataset
used to train the task module. The main contribution of this paper is a zero-shot learning model that
corrects zero-shot predictions based on training data used to generate the initial prediction.
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Figure 1: The task module produces an initial prediction. The correction module provides a correction
such that when combined with the initial prediction, produces a better prediction.

2 Related Works

For zero-shot learning for images, the majority of state-of-the-art methods are embedding-based
methods. This often involves learning a mapping from the visual space to the semantic space of
class labels or vice versa. Alternatively, the embedding function between the visual and semantic
spaces is jointly learned through a latent space. Given a defined attribute ontology, each class name
can be converted to an attribute vector against which image features are compared (1). Text-based
embeddings into which to project class names can also be used (2) (3). Semantic representations
for zero-shot classes have been created from text documents of the classes eg. a Wikipedia article
for each class (4) (5) (6). Zero-shot recognition has also been framed as a conventional supervised
classification problem by hallucinating samples for unseen classes (4).

3 Correction Networks

Let DS denote our training data and DU our testing data. DS is subdivided into disjoint sets Ds
S and

Du
S . For classification, the classes in Ds

S are disjoint from the classes in Du
S . Correction Networks M

consists of two modules: a task module MT and a correction module MC . The task module MT is
so-called because it is task specific and related to the application. The task module is trained on Ds

S .
The output of MT is an estimate µ̂ of a target µ. The predictions of the task module on its training
data Ds

S is µ̂s
S . Training the task module proceeds by minimizing the distance between µ̂s

S and the
ground truth µs

S . The loss is:

LMT
= E[d(MT (T s

S), µs
S)] + α||wMT,text

||2 (1)

where T is the class text description, µ is the empirical mean of samples that belong to the class, and
d is a distance function. We use the L2 norm as the distance function.

The task module MT is not trained on Du
S nor DU . The task module’s predictions on Du

S are µ̂u
S .

Likewise, the task module’s predictions on DU are µ̂U . The correction module MC computes a
correction ε̂uS that is applied to the prediction µ̂u

S of the task module MT , where ε̂uS is calculated
based on the data used to train MT , such that the corrected prediction (µ̂u

S + ε̂uS) is closer than µ̂u
S to

the ground truth µu
S . Training the correction module proceeds by minimizing the distance between

µu
S and (µ̂u

S + ε̂uS). We use the L2 norm. The training data for the task module Ds
S is input into the

correction module by representing the training data Ds
S as an un-ordered collection of data by using

a pooling function. The objective function of the correction module is to minimize:

LMC
= E[d(MC(Tu

S ), µu
S −MT (Tu

S ))] (2)
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Table 1: Zero-shot learning classification results accuracy @ 1 on the CUB-200-2011 dataset and
the NAB dataset using class descriptions from Wikipedia on the Super-Category-Shared (SCS) and
Super-Category-Exclusive (SCE) zero-shot splits

METHOD CUB NAB
SCS SCE SCS SCE

MCZSL (8) 34.7 - - -
WAC-Linear (9) 27.0 5.0 - -
WAC-Kernel (6) 33.5 7.7 11.4 6.0
ESZSL (10) 28.5 7.4 24.3 6.3
SJE (11) 29.9 - - -
ZSLNS (5) 29.1 7.3 24.5 6.8
SynCfast (12) 28.0 8.6 18.4 3.8
SynCOVO (12) 12.5 5.9 - -
ZSLPP (13) 37.2 9.7 30.3 8.1
GAZSL (4) 43.7 10.3 35.6 8.6
Correction Networks 45.8 10.0 37.0 9.5

Table 2: Generalized Zero-shot learning classification area under Seen-Unseen Curve on CUB and
NAB datasets

METHOD CUB NAB
SCS SCE SCS SCE

WAC-Linear (9) 23.9 4.9 23.5 -
WAC-Kernel (6) 22.5 5.4 0.7 2.3
SynCFast (12) 13.1 4.0 2.7 0.8
ESZSL (10) 18.5 4.5 9.2 2.9
ZSLNS (5) 14.7 4.4 9.3 2.3
SynCOvO (12) 1.7 1.0 0.1 -
ZSLPP (13) 30.4 6.1 12.6 3.5
GAZSL (4) 35.4 8.7 20.4 5.8
CorrectionNet 41.9 9.0 25.4 7.6

We adopt the meta-learning sampling strategy for training as in (7). Training data for Correction
Networks are formed by randomly selecting a subset Ds

S from the training data DS . Then, the task
module MT , is trained on Ds

S . The remaining tasks that the task module MT does not train on are
treated as Du

S for MT . To use Correction Networks for evaluation, the task module MT outputs µ̂U

and the correction network supplies ε̂U . The output of the Correction Networks is µ̄U = µ̂U + ε̂U .

4 Experiments

We demonstrate Correction Networks on Caltech UCSD Birds 2011 (CUB) (14) and North America
Birds (NAB) (15) with class data from Wikipedia. The top-1 accuracy of our method and eight
state-of-the-art algorithms for the CUB and NAB datasets for both the SCS split and the SCE split
are tabulated in Table 1. The eight comparison models are MCZSL (8), ZSLNS (5), SJE (11), WAC
(6), SynC (12), ZSLPP (13), and GAZSL (4). The performance numbers are copied from (4). We
also report generalized zero-shot learning performance using the area under the seen-unseen curve
(16). This is tabulated in Table 2. Our model performs favorably against the other models.

5 Conclusion

We propose a zero-shot learning model that consists of a task module and a correction module. The
training data is partitioned into a set of data used to train the task module and a disjoint set of data
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used to train the correction module. Our model performs favorably against the state-of-the-art on
image classification guided by natural language descriptions of novel image classes.
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