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Abstract

Localizing natural language phrases in images is a challenging problem that re-
quires joint understanding of both the textual and visual modalities. In the unsuper-
vised setting, lack of supervisory signals exacerbate this difficulty. In this paper, we
propose a novel framework for unsupervised visual grounding which uses concept
learning as a proxy task to obtain self-supervision. The simple intuition behind
our idea is to encourage the model to localize to regions which can explain some
semantic property in the data, in our case, the property being the presence of a
concept in a set of images. We present quantitative and qualitative experiments to
demonstrate the efficacy of our approach and show a 5.6% improvement over the
state of the art on Visual Genome dataset, a 5.8% improvement on the ReferItGame
dataset and comparable to state-of-art performance on the Flickr30k dataset.

1 Introduction
Utilizing arbitrary length phrases for visual grounding overcomes the limitation of using a restricted
set of categories for localization and provides a more detailed description of the region of interest
as compared to single-word nouns or attributes. The problem of supervised visual grounding (i.e
localizing) of phrases has hence gathered a lot of interest in recent vision literature [4, 7, 2]. However,
supervised approaches require expensive bounding box or pixel level annotations which are difficult
to scale. In this paper we address the problem of visual grounding of textual phrases with an
unsupervised approach where no bounding box annotation exists during training. Given the lack
of supervision, we develop a self-supervised proxy task which can be used to guide the learning.
The general idea behind self-supervision is to design a pretext task which involves explaining some
regularity about the input data. Instead of directly optimizing the localization objective, the model
is trained with a surrogate loss which tries to optimize for the proxy task. A good proxy improves
performance on the final task when the surrogate loss is minimized. We propose concept-learning as
a substitute task for visual grounding. During training, we create concept batches of size k, consisting
of k different phrase-image pairs, all containing a common concept. We exploit this presence of
semantic commonality within the concept batch to generate supervisory signals. We hypothesize
that to predict these commonalities, the model must localize them correctly within each image of
the set. We induce a parametrization in the form of attention which, given the input text and image,
can localize the phrase. These localized regions are then used to predict the common concept. The
entity to be grounded in most phrases is a single-word occurring in varying contexts and learning
high-level semantic representations for these concept can improve visual grounding. In summary, the
main contributions of our work are as follows:

• We propose a novel framework for visual grounding of phrases through semantic self-
supervision where the proxy task is formulated as concept learning. We introduce the idea
of a concept batch to aid learning.
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Figure 1: An overview of our model. The encoder takes in a set of image-phrase pairs, indexed by
i, all sharing a common concept and embeds them to Vi and ti respectively. These features are
used to induce a parametrization for spatial attention. Next, the decoder uses the visual attention
map to predict the common concept. In addition, the decoder also predicts the common concept
independently for each pair (i). For details, see Section 2.

• We evaluate our approach on the Visual Genome and ReferIt dataset and achieve state-
of-art performance with a gain of 5.6% and 5.8% respectively. We also get performance
comparable to the state-of-art on Flickr30k dataset.

• We analyze the behavior of our surrogate loss and the concept batch which gives an insight
into the functioning of our approach. We also analyze the correlation of our model’s
performance with factors like bounding box size and concept similarity.

2 Grounding through semantic self-supervision
Proxy task formulation. Our model is trained for the proxy task of concept-learning. A concept is
defined as the entity which is to be grounded in the image. For example, in the phrase ‘white towel
on the counter’, the highlighted word ‘towel’ is the concept. We hypothesize that if we induce a
parametrization for localization of the phrase and use the localized regions to predict the concept
present in an image, the parametrization will converge to the ground truth localization of the phrase.
Given this proxy task, we’re faced with two main challenges: 1) How do we identify the concept
in a phrase? and 2) How do we learn concept representations in an unsupervised setting? For the
first part, we assume the concept is a single-word entity and exists within the phrase, and naively
pick a random noun from the phrase. For the second problem, we introduce the notion of a concept
batch. A concept batch is one training instance for our model, which itself consists of k phrase-image
pairs, all containing a common concept. The proxy task is now formulated as jointly decoding the
common concept using all k localized feature representations in addition to independently decoding
the same concept. The intuition behind training with a concept batch is that for decoding the common
concept, k phrase-image pairs should encode a localized representation which is invariant to the
difference in context across the k pairs. On the other hand, the proxy task of decoding independent
concept (for each image in the batch) ensures two things: a) Individual and common representations
are consistent b) Model cannot find a shortcut by using only few inputs from the concept batch to
decode the common concept (see section 4). Note that using a concept batch with random sampling
of nouns can be interpreted as generating weak supervision, albeit noisy in nature. Since the same
image-phrase pair can be chosen with different sampled concepts during training, it is this random
sampling of nouns which ensures that the model doesn’t only learn a simple concept-identifier, but
also generates discriminative information about a concept in different contexts.

Encoder-Decoder model. We adopt an encoder-decoder architecture for learning to ground as
illustrated in Figure 1. The encoder uses an attention mechanism similar to [10] using the joint
features from visual and textual modalities. Similar to previous work, we use a pre-trained VGG16
and a language model [1] and freeze their weights during training. For the ith index in the concept
batch, given visual features Vi = fV GG(Ii) and textual features ti = fLM (P i), the attention over
visual regions is given by:

f iattn = softmax(fjoint(V
i, ti)). (1)

fjoint(V
i, ti) = Φs(Φr(Φq(Φp([Vi, ti])))), (2)
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Method Accuracy
Visual Genome ReferIt (mask) ReferIt (bbox) Flickr30k

Random baseline 11.15 16.48 24.30 27.24
Center baseline 20.55 17.04 30.40 49.20
VGG baseline 18.04 15.64 29.88 35.37
Fang et al. [3] 14.03 23.93 33.52 29.03
Zhang et al. [11] 19.31 21.94 31.97 42.40
Ramanishka et al. [8] - - - 50.10
Xiao et al. [9] 24.40 - - -
Semantic self-supervision 30.03 29.72 39.98 49.10

Loss Type Concept batch Size (k)
k = 3 k = 5 k = 7 k = 9

Independent concept only 27.15 27.27 28.01 28.05
Common concept only 27.52 28.94 29.18 27.90
Independent and common concept 28.25 28.91 29.89 30.03

Table 1: Grounding evaluation using the pointing game (left) and the ablation analysis of different
surrogate losses while varying the concept batch size (right).

where Vi ∈ Rm×n, ti ∈ Rl×1, fjoint(Vi, ti) ∈ R1×n, [Vi, ti] is an index-wise concatenation
operator (over the first dimension) between a matrix Vi and a vector ti resulting in a matrix of size
((m+ l)× n). Φ(·) corresponds to a hidden layer of a neural network and is defined as:

Φp(X) = ReLU(WpX + bp), (3)

where ReLU(x) = max(x, 0), Wp ∈ Rp×d, bp ∈ Rp×1 and X ∈ Rd×n. Here n is the number of
regions over which attention is defined and d is the dimensionality of each region with respective to
X. Thus, we use a 4 layered non linear perceptron to calculate attention for each of the n regions
(Since our attention is over VGG16 features, n = 7× 7 ). The four Φ(·) layers gradually decrease the
dimensionality of the concatenated joint features from (m + l) → p → q → r → s where s = 1.
Note that the attention module is shared across all Vi and ti and the encoder is common for all pairs
in the concept batch. Given the attention weights f iattn ∈ R1×n, the visual attention for common
concept prediction (fvac) is computed by taking the weighted sum with the original visual features.

fvac =

k∑
i=1

f iattnV
i (4)

We find that aggregating the visual attention across regions, which is commonly done in the past
attention literature degrades performance for our task. Therefore we retain the spatial information and
only aggregate the features across the concept batch. Similarly, the visual attention for independent
concept prediction, f ivai is given by the element-wise product of the attention weights and visual
features.

f ivai = f iattnV
i (5)

Finally, both the attended features are flattened and separately connected to a fully connected layer,
leading to a softmax over the concepts. In practice, we also down-sample the dimensionality of f ivai
using 1 ∗ 1 convolutions before we aggregate and flatten the features.

ycommon = softmax(Wvacfvac + bvac). (6)

yi
independent = softmax(Wvaif

i
vai + bvai), (7)

where ycommon is the network prediction for the common concept and yi
independent is the independent

concept prediction for the ith index in the concept batch. Our surrogate loss is the sum of common
concept cross-entropy loss and the concept-batch averaged independent concept cross-entropy loss.

3 Experimental setup and evaluation
An ImageNet trained VGG16 and a Google 1 Billion trained language model are used for encoding
the image and the phrase respectively. Before the attention module, both the features are normalized
using a batch-normalization layer [5]. The concept vocabulary used for training with the softmax loss
is taken from the most frequently occurring nouns. Since the frequency distribution follows the Zipf’s
Law, around 95% of the phrases are accounted for by top 2000 concepts, which is used as the softmax
size. To handle imbalance in concept sampling, we create mini batches by uniformly sampling from
the concept vocabulary instead of image-phrase samples during training. In the encoder, the values
of p, q, r, s from Equation 2 are taken as 512, 128, 32, 1 respectively. We test our model on three
diverse datasets in terms of their phrase and image statistics, namely Visual Genome, Flickr30k
Entities and Refer-It. Since our model generates localization in the form of a heatmap, we evaluate
with the pointing game metric [11]. Out of the 49 regions in the attention map, we choose the center
of the grid which is maximally activated, as the maximum pixel for the pointing game. We also test
on three naive, but revealing baselines. The first is the random baseline which randomly picks one
of the 49 grids. The second is the center baseline which always picks the center-most point of the
image as the maximum pixel. The third is the VGG baseline which picks the maximum grid from
the 7× 7 feature map (which is the input to our model) of a pre-trained VGG16, hence acting like a
visual-only baseline.
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Figure 2: Qualitative results of our approach and its comparison with channel-averaged VGG16
features.

4 Results and analysis
Results. We report the comparison of our method with the baselines and previous methods in this
section. Table 1 summarizes the performance of our best model on the three different datasets. To
highlight our generalization, we train our model on Visual Genome since it’s the largest dataset out of
the three and directly evaluate on the other two without fine tuning. Surprisingly, the VGG16 baseline
fares decently well even though it does not take any phrase-related information into account owing
to the fact that many phrases refer to commonly occurring objects. The center baseline performs
very well for Fickr30k showing the centered nature of the phrases with respect to spatial location.
Our model outperforms all baselines on Visual Genome and Refer-It and is just 1% less than the
state-of-art work of [8] on Flickr30k.

Concept batch size and surrogate loss. We perform ablative studies on the two loss terms and the
concept batch size k. We use the shorthand IC (independent concept only), CC (common concept
only) and ICC (independent and common concept) for the three loss types from Table 1. We train
our model with the IC and CC loss separately, keeping everything else in the pipeline fixed. For all
three settings, we vary the concept batch size k and observe some interesting trends. For a fixed loss
type, the performance increases as we increase k, the CC loss being the exception to this trend. The
performance for CC loss increases up to k = 7, but goes down with k = 9. This points to a very
common problem with self-supervised techniques where the model finds a shortcut to reduce the loss
value without improving on the performance. With only the common concept loss, the network can
learn a majority voting mechanism such that not all k concept representations are consistent with
the common concept and the loss can be optimized even though some instances aren’t grounded
correctly. This is corroborated with the fact that we also observe a faster convergence of CC loss for
k = 9 than the lower concept batch sizes. These results empirically highlight the importance of the
IC loss term as a regularizer and also highlight the usefulness of our concept batch formulation since
it improves performance.

Performance variation across concepts. To better understand the variation in performance across
the chosen concepts, we also compute the performance across each of the 2000 concept classes and
observe variation in performance. We investigate two possible causes for this variability. The first is
the average bounding box size associated with each of these concepts for which we expectedly find a
strong positive correlation (ρ = 0.85), explaining the lower performance for concepts like ‘screw’ and

‘doorknob’. The second is the existing knowledge of concept labels present in the ImageNet classes
which our model obtains through the VGG16 based visual encoder. For computing the correlation
of concept performance with the knowledge from ImageNet classes, we use a trained word2vec
model [6] and compute the maximum similarity of a particular concept across all the ImageNet
classes. We find no noticeable correlation between the ImageNet similarity of our concepts and their
performance (ρ = −0.02). This further strengthens the case for our approach since our concept
performance isn’t biased towards the ImageNet labels.

Improvement over a noun-based concept detector. We also conduct a simple experiment to verify
that the model isn’t simply working as a noun-based concept detector instead of modeling the
complete phrase. For this, we replace the full phrase with a single noun, randomly sampled from the
phrase, as the input to the textual encoder. We note a 4.7% drop in performance on Visual Genome.
Since training of the original model enforces only concept-level discrimination, it’s interesting to
see the presence of complete phrases being useful for model performance and shows that our model
learns more than just word-level concepts.
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