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Abstract

Humans can imagine a scene from a sound. We want machines to do so by using
conditional generative adversarial networks (GANs). By applying the techniques
including spectral norm, projection discriminator and auxiliary classifier, compared
with naive conditional GAN, the model can generate images with better quality in
terms of both subjective and objective evaluations. Almost three-fourth of people
agree that our model have the ability to generate images related to sounds. By
inputting different volumes of the same sound, our model output different scales of
changes based on the volumes, showing that our model truly knows the relationship
between sounds and images to some extent.

1 Introduction
People now are trying to make machines work like humans. Researchers are attempting to teach
machines to comprehend natural languages, to understand the content in images, etc. After under-
standing the content, we also want machines to describe what they see [1][2]. In addition, we also
want machines to have the ability to imagine. In the task of text-to-image [3], machine can turn
text descriptions into images. In this paper, we want machines to imagine the scenes by listening to
sounds. We hope that when hearing sounds, machine can draw the object that is making sounds and
the scene that the sound is made. For instance, after hearing the sparrows chirp, machine can draw a
picture of sparrows with probably trees or grass as background.

The technology we use to learn an audio-to-image generator is based on GAN. In this paper, we fuse
several advanced techniques of conditional GANs [4] including spectral normalization [5], hinge
loss [6][7], projection discriminator [8] and auxiliary classifier [9] into one model. Machine learns
the relationships between audio and visual information from watching videos. We create a dataset
from SoundNet Dataset [10] by using pretrained image classification and sound classification models
to apply data cleaning. After training, the audio-to-image generator can produce recognizable images,
and the advanced techniques of conditional GAN achieve better Inception score [11][12] than the
naive conditional GAN. In addition, we show that our model learns the relationship between sounds
and images by inputting the same sound with different volume levels.

2 Dataset

In previous work [10], videos crawled from the webs are used to train a sound classification model,
SoundNet, to classify where or what is in the sounds. Here we use the screenshots of videos and
sound segment files in the dataset to train our audio-to-image models. Most of sound segment files in
our dataset are around 30 seconds long, and we resize all the screenshots to size of 64*64. However,
we found that the corpus for training SoundNet cannot be directly used to train audio-to-image models
because there are some discrepancies between images and sounds. The screenshots and the sounds
of videos can be unrelated. To relieve the difficulties of learning sound-image matching, we use an
image classifier and a sound classifier to clean up the dataset automatically. We classified sounds in
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Figure 1: Model architecture with projection discriminator and auxiliary classifier.

those videos into categories by the pretrained sound classification model, SoundNet [10]. We also
use Inception model[13], an image classification model, to classify the images. If the classification
results for the image and sound are not the same, the sound-image pair would be discarded. Because
the above data cleaning procedure is automatic, it cannot be perfect, but it remarkably improves the
quality of the generation results.

Because some objects are very rare in the training data, to make the training of audio-to-image
plausible, we chose nine classes with the most examples in the training data. The number of training
examples for each class is listed in Table 1. The total number of sound-image pairs for training is
10701, and the total number of sound segments for testing is 248.

Class Plane Soccer Piano Baseball Speedboat Dam Dog Drum Guitar
# of data 2803 2077 1899 1708 900 584 264 259 207

Table 1: Number of training data in different classes.

3 Approach
Due to the success of text-to-image synthesis [3], which utilized text embeddings as condition for
generators to generate correlated images, our work is based on similar model architecture. Recently,
there are some researches trying to improve the generation by limiting discriminator to be a function
in 1-Lipschitz continuity [8][5][14] or utilizing another auxiliary classifier in discriminator [9]. We
fuse these approaches into one model. Therefore, although the algorithm for GAN training is similar
to text-to-image, the discriminator architecture and loss function used here are very different. The
model architecture is illustrated in Figure 1.

3.1 Generator
The generator is shown in the left hand side of Figure 1. The input sound segment is first represented
by a sequence of feature.Using SoundNet for feature extraction is illustrated in Figure 1. Then all the
features in the sequence are averaged into a single vector s. The vector s is taken as the condition
of the generator. Then, we concatenate a noise vector z sampled from normal distribution with our
sound condition as the input to generator. Generator is the cascade of several transposed convolution
layers with hyperbolic tangent function as the activation function in the last layer. The output of the
generator is an image generated based on the input condition.

3.2 Discriminator
The discriminator is in the right hand side of Figure 1. The discriminator takes a pair of sound
segment and image as input, and outputs a score. The architecture of discriminator is the cascade
of several convolution layers with spectral normalization [5] in each layer. The convolution layers
takes an image as input and outputs a scalar representing the quality of the image. The projection
layer which is simply a linear transformation projects the sound vector into a latent representation [8].
Then by computing inner-product between projected vector and the output of one of the convolution
layer, we obtain a similarity score representing the degree of match between the audio and image.

The final output of the discriminator is the addition of the similarity score and the scalar that solely
comes from convolution layers. The final score represents not only the realness of images but
also relevance between sounds and images. The discriminator learns to assign large score to the
sound-image pairs in the training data, and low score to the sound and its generated image. While
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the generator tries to fool discriminator, it learns how to generate images which are relevant to input
condition and looks like real photos.

In Figure 1, there is an auxiliary classifier. The classifier shares weights with the convolution layers
in discriminator, and they are jointly learned. Because in the training data, the class of the sound
segment and image pair can be obtained by SoundNet and Inception model, the classifier can learn to
predict the class of an input image from the training data. The generator will learn to generate images
that can be correctly classified by the auxiliary classifier.

4 Experiments
Our training procedure follows standard GAN training algorithm. Generator is composed of four
deconvolution layers with ascending number of kernels. Discriminator is composed of four convo-
lution layers and with linear function as activation function of final layer. To keep this adversarial
training procedure in balance, more training steps are needed for generator to catch up discriminator.
We train generator five times per each update of discriminator. The input dimension is 266 which
consist of 256-dimension SoundNet feature and 10-dimension z sampled from normal distribution.
The whole optimization process is based on Adam optimizer with learning rate 0.0002, and we train
300 epochs for all experiments. Generated images and corresponding audio files in this section can
be found in https://wjohn1483.github.io/audio_to_scene/index.html.

4.1 Qualitative Results

Sampled images from generator by inputting the sounds not in training data are shown in Fig 2.
Sounds belonging to some classes can generate relatively high quality images. For speedboat or plane,
there are eye-catching objects in the generated images. The generator truly generates the images that
are interpretable to some extent. Some classes of images get worse quality of images than others.
This may be because the imbalance and variance in different classes of training data. The number of
training examples may explains why some classes performed better than the others. We also found
that for all the sounds classified into drums, they still have very high diversity. There are many kinds
of drum and are played in variant places. It becomes an obstacle for model to generate image from
the sound of such class.

Speedboat Plane Dam Soccer Baseball

Piano Drum Dog Guitar

Figure 2: Samples from our model. Each image is generated from a sound segment. The labels are
the classes predicted by SoundNet.

4.2 Sound Volume
To further investigate whether our model truly learns the relation between sound an vision, we tune
the volume of sounds to observe the influences on generated images. We input those tuned sound
features into our generator which was pretrained on standard volume scale. The images are shown
in Table 2. The numbers on top indicates the scale of volume that we modified our sound files. In
those images, we can see different scale of splashes. As the volume goes up, the scale of splashes
become larger. We can see that our model truly learned the relation between characteristic of sound
and image. In this case, the volume of sounds is reflect on splashes.

0.5 times Original 2 times 3 times 0.5 times Original 2 times 3 times

Table 2: Generated images by inputting different volumes of sounds. The numbers in the table is the
relative loudness to the original sound. (Left 4 is the class of speedboat; Right 4 is the class of dam)
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4.3 Ablation Study
The architecture of our model contains spectral normalization, hinge version loss, projection dis-
criminator and auxiliary classifier. In this subsection, we want to know the influence of each part
in our model. Table 3-(I) shows the Inception score of different types of model. Row (a) shows the
upper bound of this task, which is obtained by inputting all the real images we have in training and
testing data to calculate Inception score. The Inception score obtained in this way is 4.44, which is
the highest score we can get. We can use this upper bound score as a criterion to measure the quality
between generated images and real images. In both rows (b) and (c), we used the same network
architecture as in [3], but we substitute sound embedding for sentence embedding. In row (b), we
apply improved W-GAN[14] on original text to image architecture, which use gradient penalty to
make sure discriminator is in 1-Lipschitz continuity.

The table shows that improved W-GAN cannot get good Inception score in this task. On the other
hand, conditional GAN can perform better. By adding different tricks mentioned above, we can get
improvements step by step. It shows that tricks do help our model to generate better images. Finally,
with all the technologies, we can get 2.83 in Inception score, which performs relatively good compare
to our upper bound.

Model (I) Inception Score (II) Human avg. score
(a) Upper bound 4.44 ± 1.91 -
(b) Improved WGAN 1.42 ± 0.13 -
(c) Conditional GAN 2.21 ± 0.38 -
(d) + Spectral Norm 2.45 ± 0.48 1.90
(e) + Hinge Loss 2.49 ± 0.51 2.74
(f) + Projection Discriminator 2.61 ± 0.41 3.16
(g) + Auxiliary Classifier 2.83 ± 0.53 3.70

Table 3: (I) Inception scores of different models. (II) Human scores on different models.

4.4 Human Evaluation
4.4.1 Evaluation on ablation study
In this section, we want to prove that the improvement of different models is not only shown on
Inception score but also on human feeling. We ask ten people to help us evaluate our models. Our
experimental setup is as follows, we sample some pairs of image and corresponding sounds in testing
data. Then, let people listen to those testing sounds and rate from 1 to 5. If the generated image is
unreal or uncorrelated to testing sound, people should rate this pair with lower score. On the contrary,
if the generated image seems real enough and have high correlation with sound, this pair should get
higher score. The results are shown in Table 3-(II). We can see that most people think the model
with all tricks performed the best. Although those models get close scores in Inception score, they
get scores which have at least 0.4 gap between different models.

4.4.2 Correlation between sounds and images

To measure the correlation between sounds and images, we ask people to choose the most correlated
image from two different images after hearing a sound from testing data. These two images are
conditioned on different class of sounds so that if our model can generate images related to given
class, people will choose the corresponding image which is generated by inputting sound that they
just listen to, rather than image generated by inputting sampled sound from other classes.

Our results shows that 73% people choose the image generated by the sound they hear, 11% people
choose the image generated by sound sampled from other classes, and 16% people think both of the
images cannot represent the sound they listen to. Most of the people think the images that our model
generated are correlated to input sounds. It shows that our model has the ability to generate images
related to given sounds.

5 Conclusion
In this paper, we introduce a novel task in which images are generated conditioned on sounds. Base
on SoundNet dataset, we utilize image and sound classification results to build a relatively cleaner
image-sound paired dataset. By applying different methods to our generative model, the model can
generate images with better quality in terms of both subjective and objective evaluations.
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