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Abstract

We introduce a new dataset for the task of deciding whether a caption is true about
an image. The data contains 107,296 examples of 29,680 unique English sentences
paired with natural photographs. We present an approach for finding visually com-
plex images and crowdsourcing linguistically diverse captions. Qualitative analysis
shows the data requires compositional reasoning about quantities, comparisons,
and spatial relations. Human performance and evaluation of state-of-the-art visual
reasoning methods show the data is an open challenge for current methods.

The left image contains twice the number of dogs
as the right image, and at least two dogs in total

are standing.

One image shows exactly two brown acorns in
back-to-back caps on green foliage.

Figure 1: Two examples from NLVR2. Each caption is paired with two images. The task is to predict
if the caption is True or False. The truth value of the left sentence is True, while the right is False.1

1 Introduction
Jointly reasoning about linguistic and visual inputs is receiving increasing research attention. However,
the challenges presented by available resources [e.g., Zitnick and Parikh, 2013, Antol et al., 2015,
Chen et al., 2016] are far from reflecting the full complexity of the problem. The language is often
relatively simple, requiring reasoning that is not fundamentally different than traditional vision
problems, often consisting of only identifying simple properties of an object or a small set of spatial
relations between two objects. This motivated the design of more complex visual reasoning tasks,
including NLVR [Suhr et al., 2017] and CLEVR [Johnson et al., 2017a,b]. However, both tasks use
synthetic images, and the most widely studied version of CLEVR uses synthetic language as well. As
a result, these resources only partially reflect the challenges of language and vision.

We study the challenges of jointly reasoning about language and vision by identifying visual properties
that enable compositional reasoning and the type of language they bring about. We construct Natural
∗Contributed equally.
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1The Supplementary Material contains license information on the photographs in this paper.
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Language Visual Reasoning for Real (NLVR2), a new dataset focused on web photos for the task of
determining if a statement is true with regard to an image. Our analysis shows that joint reasoning
about complex visual input and diverse language requires compositional reasoning, including about
sets, properties, counts, comparisons, and spatial relations. Figure 1 shows examples from NLVR2.

Scalable curation of language and vision data that requires complex reasoning requires addressing
two challenges. First, we must identify images that have sufficient visual complexity to allow for
the type of reasoning desired. For example, a photo of a single beetle with a uniform background
supports limited reasoning beyond the existence of the beetle and its properties. Second, we need a
scalable process to collect a large set of captions that are linguistically diverse. We query a search
engine with queries designed to yield visually complex photographs. Rather than presenting workers
with a single image to annotate, we elicit interesting captions by asking workers to compare and
contrast four pairs of images at the same time, a process inspired by Suhr et al. [2017]. The caption
must be true for two pairs, and false for the others. Finally, we generate an example for each pair for
the task of determining if a caption is true for the pair.

NLVR2 contains 107,296 examples, each of a caption and an image pair. The data includes 29,680
unique sentences and 127,506 images. Qualitative linguistic analysis shows that our data retains the
broad representation of linguistic phenomena seen in NLVR, while displaying a far more interesting
vision challenge. We evaluate the challenge that NLVR2 presents using a set of baselines and
state-of-the-art visual reasoning methods. The relatively low performance shows that NLVR2

presents a significant challenge even for methods that perform well on existing visual reasoning tasks,
demonstrating how using natural inputs for both modalities better exposes the challenges of the task.

2 Related Work and Datasets
Natural language understanding in the context of images has been studied within various tasks,
including visual question answering [Zitnick and Parikh, 2013, Antol et al., 2015], caption gen-
eration [Chen et al., 2016], referring expression resolution [Mitchell et al., 2010, Matuszek et al.,
2012, FitzGerald et al., 2013], and instruction following [MacMahon et al., 2006, Chen and Mooney,
2011, Bisk et al., 2016, Misra et al., 2018, Blukis et al., 2018]. Several recent datasets focus on
compositional reasoning about images and language, mostly using synthetic data for both language
and vision [Andreas et al., 2016b, Johnson et al., 2017a,b, Kuhnle and Copestake, 2017, Kahou
et al., 2018, Yang et al., 2018]. Two exceptions are CLEVR-Humans [Johnson et al., 2017b] and
NLVR [Suhr et al., 2017], which use crowdsourced language data. Several methods have been
proposed for compositional visual reasoning [Andreas et al., 2016a,b, Johnson et al., 2017b, Perez
et al., 2018, Hu et al., 2017, Mascharka et al., 2018, Hu et al., 2018, Suarez et al., 2018, Santoro
et al., 2017, Zhu et al., 2017, Hudson and Manning, 2018, Tan and Bansal, 2018, Malinowski et al.,
2018]. In contrast to synthetic images or text, we focus both on human-written language and web
photographs. Our approach is inspired by the collection of NLVR, where workers were shown a set
of similar images and asked to write a sentence true for some images, but false for the others. This
requires workers to compare and constrast sets of photographs. We adapt this method to web photos,
including introducing a process to identify images that support complex reasoning.

3 Collecting NLVR2

Each example in NLVR2 includes a pair of images and a natural language sentence. The task is to
determine whether the sentence is True or False about the pair of images. This binary prediction task
allows a straightforward evaluation of accuracy. We design a process to identify images that enable
complex reasoning, collect grounded natural language descriptions, and label them as True or False.
Figure 2 illustrates the collection procedure, which includes a sequence of four crowdsourcing tasks.

We use 124 synsets from the ILSVRC2014 ImageNet challenge [Russakovsky et al., 2015] to generate
search queries and retrieve sets of images with similar content. The synset correspondence allows use
of models pre-trained on ImageNet, such as ResNet [He et al., 2016] or Inception [Szegedy et al.,
2016]. We begin by collecting sets of eight images for each synset, through a three-step process:
generating search queries and downloading sets of similar images (Figure 2a), pruning low-quality
images (Figure 2b), and constructing sets of eight images (Figure 2c). We display randomly paired
images from each set of eight to a worker, and ask them to select two pairs, and write a sentence
that is true about the selected pairs but false about the others (Figure 2d). This requires workers
to find similarities and differences between sets of images, which encourages more compositional
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(a) Find sets of images: For each synset, we generate a search queries designed to retrieve visually complex
images. We combine synset names with numerical expressions, hypernyms in WordNet [Miller, 1993, Deng
et al., 2014, Russakovsky et al., 2015], words close in the embedding space of word2vec [Mikolov et al., 2013],
and activities. In this example, the query two acorns is generated for the synset acorn and is issued to the
search engine. The leftmost image appears in the list of results. The similar images tool is used to find a set of
images, shown on the right, that are similar to this image.

🔍 two acorns        

✘
✘✘✘

✔

✔

One image shows 
exactly two brown 
acorns in back-to-
back caps on green 
foliage.

One image shows 
exactly two brown 
acorns in back-to-back 
caps on green foliage.

✔
True 
False

(b) Image pruning: We remove images identified as low-quality by crowdworkers, including images that do not
contain the synset, images containing inappropriate content, or non-realistic artwork or collages. In this example,
one image is removed because it does not show an acorn.

🔍 two acorns        

✘
✘✘✘

✔

✔

One image shows 
exactly two brown 
acorns in back-to-
back caps on green 
foliage.

One image shows 
exactly two brown 
acorns in back-to-back 
caps on green foliage.

✔
True 
False

(c) Set construction: Crowdworkers mark the remaining images as interesting or non-interesting. We define
interesting images as showing more than one instance of the synset, showing the synset interacting with other
objects, showing the synset performing an activity, or displaying a set of diverse objects or features. In this
example, three images are marked as non-interesting (top row) because they contain only a single instance of the
synset. Any sets with fewer than three interesting images are discarded. The images are re-ordered (bottom row)
so that interesting images appear before non-interesting images, and the top eight images are used to form the
set. In this example, the set is formed using the leftmost eight images. ✘

🔍 two acorns        

✔

✔

One image shows 
exactly two brown 
acorns in back-to-
back caps on green 
foliage.

One image shows exactly 
two brown acorns in back-to-
back caps on green foliage. ✔

True 
False

✘
Not

Interesting
Not

Interesting
Not

Interesting

✘

🔍 two acorns        

✔

✔

One image shows 
exactly two brown 
acorns in back-to-
back caps on green 
foliage.

One image shows exactly 
two brown acorns in back-to-
back caps on green foliage. ✔

True 
False

✘
Not

Interesting
Not

Interesting
Not

Interesting

(d) Sentence writing: The images in the set are randomly paired and shown to the worker. The worker selects
two pairs, and writes a sentence that is true for the two selected pairs but false for the other two pairs.

🔍 two acorns        

✘
✘✘✘

✔

✔

One image shows 
exactly two brown 
acorns in back-to-
back caps on green 
foliage.

One image shows 
exactly two brown 
acorns in back-to-back 
caps on green foliage.

✔
True 
False

(e) Validation: The set is split into four examples, where each example consists of the sentence and a pair of
images. Each example is shown to a worker, who labels it as True or False.

🔍 two acorns        

✘
✘✘✘

✔

✔

One image shows 
exactly two brown 
acorns in back-to-
back caps on green 
foliage.

One image shows 
exactly two brown 
acorns in back-to-back 
caps on green foliage.

✔
True 
False

Figure 2: Illustration of the data collection process, showing construction of a single example.

sentences [Suhr et al., 2017]. Our guidelines encourage more compositionally challenging sentences.
Each set of eight images is used for two sentence-writing tasks. Finally, we split each sentence-
writing task into four examples, where the sentence is paired with each pair of images. We show each
example independently to a worker, who labels the example as True or False (Figure 2e).

We collect additional validation judgments for randomly selected 20% of the examples, ensuring
that examples from the same initial set of eight images do not appear across the split. For each of
these examples, we collect an additional four validation judgments, and remove examples where
two or more workers did not agree with the original label. We split this 20% into three equal-sized
splits to form the development and two test sets. The rest is used as training data. One of the test
sets is unreleased and will be used for the task leaderboard only. In total, NLVR2 consists of 107,296
examples, covering 29,680 unique sentences and 107,296 unique images. The total cost of data
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VQA NLVR NLVR2 Example from NLVR2

Cardinality (hard) 11.5 66 28 Six rolls of paper towels are enclosed in a plastic pack-
age with the brand name on it.

Cardinality (soft) 1 16 22.5 In at least one image there is a bottle of wine and a
glass with red wine in it.

Existential 11.5 88 21.5 There are at most 3 water buffalos in the image pair.
Universal 1 7.5 18 Each image contains exactly one eagle with outspread

wings flying in a clear blue sky.
Coordination 5 17 28 Each image contains only one wolf, and all images

include snowy backdrops.
Coreference 6.5 3 14.5 there are four or more animals very close to each other

on the grass in the image to the left.
Spatial Relations 42.5 66 56.5 At least one panda is sitting near a fallen branch on

the ground.
Comparative 1 3 9 There are more birds in the image on the right than in

the image on the left.
Presupposition 80 19.5 16 A cookie sits in the dessert in the image on the left.
Negation 1 9.5 13.5 The front paws of the dog in the image on the left are

not touching the ground.
Table 1: Linguistic analysis of sentences from NLVR2, VQA, and NLVR. We analyze 200 sentences
from each dataset for presence of the semantic phenomena described in Suhr et al. [2017].

collection was $19,132.99. The inter-annotator agreement, measured over the development and test
sets, is near perfect (Krippendorff’s α = 0.91 and Fleiss’ κ = 0.89).

4 Data Analysis
We study the reasoning challenge of the data by analyzing sentences for presence of the linguistic
phenomena identified in Suhr et al. [2017]. Table 1 summarizes the results of this analysis, comparing
NLVR2 with VQA Antol et al. [2015] and NLVR Suhr et al. [2017]. NLVR2 presents a significant
visual reasoning challenge, requiring a language understanding system to be able to count, compare
objects, reason about sets, and understand compositional semantic phenomena such as negation
and coordination. For many phenomena, such as coordination, comparisons, and negation, NLVR2

contains more examples than NLVR or VQA. This demonstrates how our use of real images and the
data collection procedure elicits more diverse natural language.

5 Experiments and Results

We evaluate the difficulty of NLVR2 using baselines and state-of-the-art visual reasoning methods.
We measure accuracy as the proportion of examples for which the model predicts the correct truth
value. We report accuracies on the unreleased test set. Human accuracy is 96.1%. The data is
balanced between True and False labels; majority class accuracy predicting True results in 51.4%
accuracy. We construct two baselines that use only one of the input modalities to measure whether the
task can be solved without observing both the text and image. These approaches result in accuracy
near majority class, showing that both modalities must be used to solve the task. The highest
accuracy, 53.5%, is achieved by training a maximum entropy classifier with features computed by
combining results of object detection over the images [He et al., 2017, Girshick et al., 2018] and
numerical expressions in the sentence. We evaluate using several methods that achieved state-of-
the-art results on the CLEVR dataset: N2NMN [Hu et al., 2017], FiLM [Perez et al., 2018], and
MAC-Network [Hudson and Manning, 2018]. We adapt these methods to process pairs of images by
computing a single set of image features for the two images concatenated horizontally. N2NMN and
MAC-Network perform near majority class accuracy, while FiLM achieves 53.0% accuracy.

6 Discussion

We introduce the NLVR2 corpus for studying joint reasoning about photographs and natural language
captions. Our analysis shows that the language contains a range of linguistic phenomena including
numerical expressions, quantifiers, coreference, and negation. Our experimental results and our
analysis illustrate the challenge that NLVR2 introduces to methods for visual reasoning. We release
training, development, and public test sets. Procedures for evaluating on the unreleased test set and a
leaderboard will be available at https://github.com/clic-lab/nlvr.
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A License Information
Tables 2 and 3 contain license and attribution information on the images included in this paper.

Image Attribution and License

MemoryCatcher (CC0)

Calabash13 (CC BY-SA 3.0)

Albert Bridge (CC BY-SA 2.0)

Randwick (CC BY-SA 3.0)

Table 2: License information for the images in Figure 1.
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Image Attribution and License

Hagerty Ryan, USFWS (CC0)

Charles Rondeau (CC0)

Peter Griffin (CC0)

Petr Kratochvil (CC0)

George Hodan (CC0)

Charles Rondeau (CC0)

Andale (CC0)

Maksym Pyrizhok (PDP)

Sheila Brown (CC0)

ulleo (CC0)

Table 3: License information for the images in Figure 2.
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