
Efficient Visual Dialog Policy Learning via Positive
Memory Retention

Rui Zhao and Volker Tresp
Ludwig Maximilian University, Munich, Germany

Siemens AG, Corporate Technology, Munich, Germany
{ruizhao,volker.tresp}@siemens.com

Abstract

This paper is concerned with the training of recurrent neural networks as goal-
oriented visual dialog agents using reinforcement learning. Training such agents
with policy gradients typically requires a large amount of samples. However,
the collection of the required data in form of conversations between chat-bots
and human agents is time-consuming and expensive. To mitigate this problem,
we describe an efficient policy gradient method using positive memory retention,
which significantly increases the sample-efficiency. We show that our method is
10 times more sample-efficient than policy gradients in extensive experiments on
a new synthetic number guessing game. Moreover, in a real-word visual object
discovery game, GuessWhat?!, the proposed method is twice as sample-efficient as
policy gradients and shows state-of-the-art performance.

1 Introduction

In recent years, advances in Deep Learning (DL) and Reinforcement Learning (RL) have led to
tremendous progress across many areas of computer vision (CV), natural language processing (NLP)
and gameplay [22, 18, 10, 11, 24, 1]. This progress, in turn, generated an emerging research area,
the learning of visually-grounded goal-oriented dialogs [4, 21]. This research involves agents that
conduct a multi-turn dialogue to achieve some task-specific goal, such as locating a specific object in
a group of objects [21], inferring which image the user is thinking about [4], and providing customer
services and restaurant reservations [1]. All these tasks require that the agent possesses the ability
to conduct a multi-round dialog and to track the inter-dependence of each question-answer pair.
Eventually, the agent learns an optimal policy through trial-and-error. The reward signal of each
trail is delayed, and is only available at the end of the dialog. Also the reward signal is very sparse
compared with a vocabulary size that often exceeds several thousands. Due to these challenges, in
practice, policy gradient methods [25] perform more favorably than Q-learning methods [23].

Consider a simple goal-oriented dialog example from our synthetic dataset in Figure 1. We initialize
three roles in this number guessing game, i.e. a questioner, an answerer, and a guesser. The questioner
and the guesser try to infer which number the answerer is thinking about. First, the questioner asks
questions about the target digit given the image, such as the color of the digit, the background color,
the style of the digit, and also the number itself. Then the answerer responses with a yes/no answer.
The questioner needs to reason based on the history dialog and keeps querying with meaningful
questions. At the end, when the maximum number of questions is reached, the guesser analyzes the
whole conversation along with the image, and takes a guess. If the guess is correct, then the task
is completed successfully, and the questioner gets a positive reward signal. Otherwise the task is
counted as a failure, and the questioner gets a non-positive reward signal.

The training of chat-bots using on-policy policy gradient methods requires numerous training samples.
When the samples are generated through human-machine-interaction, e.g. by using the Amazon

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

Question Answer
1 Is it 2 in the image? No
2 Is it in a yellow background? No
3 Is it 9 in the image? Yes
4 Is it in a white background? Yes
5 Is it a stroke style digit? Yes
6 Is it a digit in blue? No

Guess: row 1 column 3 4

Figure 1: MNIST GuessNumber dataset example: Each sample consists of an image (left), a set of sequential
questions with answers (right), and a target digit. The goal of this game is to find out the target digit by a
multi-round question-answering. The MNIST GuessNumber dataset is available at https://github.com/
ruizhaogit/MNIST-GuessNumber.

Mechanical Turk or in real-world applications, the collection of the data is time-consuming and
expensive [2]. Hence, sample-efficiency receives increasingly more attention in dialog policy learning.
We improve sample-efficiency using a novel on-off-policy policy gradient method relying on a
biologically inspired mechanism [7], termed positive memory retention. This mechanism employs a
bounded importance weight proposal on past positive trajectories, i.e. the behavior policy [6], to train
the target policy network. The retention stops automatically when no further improvement occurs
in a predefined number of iterations. The bounded importance weight proposal tackles the problem
of high variance in importance sampling. To reduce variance even further, we use recent behavior
policies to update the probability in the memory buffer. An early-stopping mechanism within each
epoch provides a trade-off between the sample-efficiency and the computational cost.

2 Background

Recurrent Language Models: The goal of a recurrent neural network (RNN) based language model
in NLP is to produce an output sequence y = [a1, a2, ..., aT] given a context x as input [14]. Here
ai ∈ A whereA is the word vocabulary. For each step, the recurrent unit processes the previous word
along with the context, and outputs a new word. At each time step t, the state st is the context input x
and the words yt−1 = [a1, ..., at−1] produced by the RNN so far, i.e. st = (x, yt−1). We sample the
next word at from this probability distribution π(·|st), then update our state st+1 = (x, yt) where
yt = [yt−1, at], and repeat in a similar fashion.

Markov Decision Process and Policy Gradient: We formalize a simplified Markov decision process
(MDP) to our setting. In the MDP, an agent takes an action a in a state s and transitions to a new
state s′. A trajectory τ refers to a sequence of transitions until the agent enters a terminal state where
it receives a reward from the environment. In our guessing games, a trajectory τ is (x, a1,1, a1,2,
..., ?, A1, a2,1, a2,2, ..., ?, A2, ..., G, r), where x is the context (image); ai is the word sequence in
question i; ? is the question mark that only occurs at the end of each question; Ai is the answer to
question i; G is the output of the guesser; r is the reward for being correct or incorrect. See also
Figure 3 in Appendix. Formally, the simplified MDP is a triple of (S,A, R) where S, A, and R
represent a set of states, actions, and rewards, respectively. A policy π is a function that chooses
an action at a given state, e.g. π : A× S → R, where π(a|s) refers to the probability of executing
action a at the state s. When we sample an action at ∼ π(·|st), we transition into state (x, [yt−1, at]).
We overload notation and let R(τ) =

∑T
t=1R(st) be the accumulated reward of a trajectory τ . We

define that R(τ) = 1, if the task is a success; R(τ) = 0, if the task is a failure. The policy network π
is a recurrent language model, parametrized by a vector θ ∈ Rn, i.e. πθ. The expected return of a
policy πθ is: J(θ) = E[R(τ)|πθ]. Our goal is to learn θ to maximize the expectation of the return
J(θ). The objective function can be optimized with an on-policy policy gradient method, known as
REINFORCE [25]. The gradient is calculated as: ∇θJ(θ) = ∇θE [(R(τ)− b)logπθ(at|st)] , where
b is an optional baseline function used to reduce the variance of the gradient estimate [25].

Importance Sampling: Importance sampling (IS) is a general technique to estimate an integral∫
f(x)p(x)dx of a function f(x), with distribution p(x) [16]. IS samples from an appropriate

proposal distribution q(x), and then uses the samples to estimate the integral: I = E[f] =∫
f(x)p(x)q(x)q(x)dx ≈ 1

N

∑N
n=1 ωnf(x(n)) = Î , where ωn = p(x(n))/q(x(n)) are the importance

weights [15].

2

https://github.com/ruizhaogit/MNIST-GuessNumber
https://github.com/ruizhaogit/MNIST-GuessNumber

3 Positive Memory Retention

This section contains our main contribution, the positive memory retention method.

Positive Memory Matters: In human memory retention, focusing on rewarded events has been
discovered to be a preferred strategy in the post-learning phase happening in the hippocampus area of
the brain [7]. We believe that this fact also intuitively applies to RL since non-rewarded trajectories
do not contribute directly to the estimated gradient to increase the expected return,∇θJ(θ), since the
reward R(τ) is zero.In a more general case, consider the policy updating with a baseline function, e.g.
0 < b < 1. The gradient of non-rewarded trajectories is opposite to the direction of the gradient of
the current policy,∇θlogπθ(at|st), because R(τ)− b < 0. This means that the weights are changed
in a way to depress the current policy πθ, which is not necessarily equivalent to maximizing the
expected return.

Policy Gradient with Importance Sampling: However, memory trajectories cannot be directly
applied to policy gradient methods. The main reason is that the training requires trajectories from
the target policy p(τ |πθ) with the current parameter vector θ, whereas the memory trajectories were
generated by q(τ |πθ′) = p(τ |πθ′) with a different parameter vector θ′. We can use the concept of IS
and obtain

Ĵ(θ) =
1

n

n∑
i=1

p(τ (i)|πθ)
q(τ (i)|πθ′)

R(τ (i)), with τ (i) ∼ q

where n is the number of trajectories used to estimate the expected return J(θ) [9]. In the equation
above, we assume q(τ) = 0⇒ p(τ) = 0. This is readily true, since each action is sampled from the
defined action space A. The importance weights are evaluated using:

ω(τ (i)) =
p(τ (i)|πθ)
q(τ (i)|πθ′)

=

∏T
t=1 πθ(at|st)∏T
t=1 πθ′(at|st)

where
∏T
t=1 πθ(at|st) needs to be calculated from the target policy, and

∏T
t=1 πθ′(at|st) has already

been calculated from the behavior policy. Finally, the importance weighted policy gradient is:

∇θĴ(θ) = ∇θEq [ω(τ)(R(τ)− b)logπθ(at|st)] . (1)

Bounded Importance Weight Proposal: This estimator is unbiased, but it suffers from very high
variances because it involves a product of a series of unbounded importance weights. To prevent the
importance weight from “exploding”, the goal is now to select only samples that are not far from the
target policy. To evaluate the distance, we use a symmetric version of the KL-divergence, i.e. the
Jensen-Shannon divergence [12]: JS(p, q) = 0.5KL(p ‖ 0.5(p+ q)) + 0.5KL(q ‖ 0.5(p+ q)). We
now derive a formulation of the JS-divergence, as a distance metric, which is related to ω:

JS(p, q) ≈ 0.5

(
K∑
k=1

pklog
2

1 + ωk
+

K∑
k=1

qklog
2

1
ωk

+ 1

)
We can see that the distance between the proposal distribution q and the optimal solution p depends
on both ωk and 1/ωk. To limit the variance of the importance sampling, we limit the importance
weight as ωk ≤ ωmax and its inverse as 1/ωk ≤ ωmax. Subsequently, we define a trust region
of importance weights, ωk ∈ [1/ωmax, ωmax] and only use trajectories whose importance weights
fall within this range. Essentially, we use the importance weight ω as a value to select high quality
trajectories, filtering out those that deviate far from the current policy. In this way, we shape the
proposal distribution into a safe one. The bound ωmax of the distribution can be selected by observing
the learning curve during training.

Probability Updating: Another way to reduce the variance is to adapt the proposal distribution,
q(x), to make it as close as possible to p(x). After updating the target policy with Equation 1, we
use the current target policy as a behavior policy for retention in the future. In this way, the memory
buffer is being continuously updated and the proposal distribution is also updated.

Policy Search via Early Stopping: In order to make the best use of the memory, the learning process
is verified using a group of validation samples. During the training process, the model remembers the
positive trajectories within the current epoch for later retention. During the retention phase, the model

3

0 10 20 30 40 50 60 70 80 90 100
55%

60%

65%

70%

75%

(epoch)

REINFORCE

Positive Memory Retention

Validation Accuracy on MNIST GuessNumber

0 10 20 30 40 50 60 70 80 90 100
45%

50%

55%

60%

65%

70%

(epoch)

REINFORCE

Positive Memory Retention

Validation Accuracy on GuessWhat?!

Figure 2: Experimental results

first goes through the memory buffer, and updates the model using Equation 1 with the bounded
importance weight proposal. After each iteration, the model verifies the learned policy on a validation
set. If the policy becomes better than the previous policy, then it is saved. If the policy has not been
improved for a limited number of iterations nmax, then memory retention is stopped and the training
of the model with REINFORCE continues. This mechanism helps the model make the best use of the
past training samples and makes the learning more stable. The complete Algorithm 1 is in Appendix .

4 Experiments

We conduct two sets of experiments to verify the proposed method.

MNIST GuessNumber: We create a synthetic dataset, named MNIST GuessNumber, which is de-
signed for quick testing and analysis of RL methods in the task of visually grounded goal-oriented di-
alogs. The creation of the dataset is inspired by [17, 5]. Each image in MNIST GuessNumber contains
a 3×3 grid of MNIST digits and each MNIST digit in the grid has four randomly sampled attributes, i.e.
color = {red, blue, green, purple, brown}, bgcolor = {cyan, yellow, white, silver, salmon},
number = {x|0 ≤ x ≤ 9} and style = {flat, stroke}, as illustrated in Figure 1. From Figure 2
left, we can see that at the 10th epoch, the model trained with positive memory retention, obtains
about 70% accuracy on the validation set, which is comparable with the same model trained with
REINFORCE for 100 epochs with an accuracy of 69.92%. After training, we evaluated the best
model on the test set. REINFORCE and positive memory retention obtain 69.86% and 70.27%
accuracy on the test split, respectively. However, the memory positive attention only needs one-tenth
of the training samples. The experiment on MNIST GuessNumber shows that the sample-efficiency
has been improved by a factor of 10. Ablation tests and training details are in Appendix 6.3 and 6.4.1.

GuessWhat?! Game: In the GuessWhat?! dataset [5] the dialogs are collected using Amazon
Mechanical Turk with respect to MS-COCO [13] images. Each game is composed of an image, a
target object in the image, the spatial information of the objects, the category of the objects, and the
QA-dialogs. Unlike the MNIST GuessNumber, the questions in the training set are in free form text.
The answers are still in the yes/no form. This dataset is more challenging due to its large vocabulary
size (5 K), and long dialog sequences. From Figure 2 right, we can see that the model trained with
REINFORCE obtains 63.39% accuracy on the validation split after training for 100 epochs. However,
at the 50th epoch, the same model trained with positive memory retention reaches 63.44% validation
accuracy. After training, we evaluated the best model on the test set. REINFORCE and positive
memory retention obtain 62.61% and 63.17% accuracy on the test split, respectively. We can see
that the proposed method provides state-of-the-art performance with double sample-efficiency on the
GuessWhat?! dataset. The details about the training process are shown in Appendix 6.4.2.

5 Conclusion

We proposed a novel positive memory retention method for improving sample-efficiency in visual di-
alog policy learning, using past positive trajectories and low-variance importance sampling estimates.
The model reuses past positive samples as behavior policies, samples from a bounded importance
weight proposal, and updates the target policy with an importance weight correction. We tested on
both synthetic and real-word datasets and illustrated dramatically improved sample-efficiency. We
demonstrate that policy gradient can successfully be trained using past trajectories in dialog tasks.

4

References
[1] Antoine Bordes and Jason Weston. Learning end-to-end goal-oriented dialog. In International

Conference on Learning Representations (ICLR), 2017.

[2] Prithvijit Chattopadhyay, Deshraj Yadav, Viraj Prabhu, Arjun Chandrasekaran, Abhishek Das,
Stefan Lee, Dhruv Batra, and Devi Parikh. Evaluating visual conversational agents via coopera-
tive human-ai games. In Conference on Human Computation and Crowdsourcing (HCOMP),
2017.

[3] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A matlab-like environment for machine
learning. In BigLearn, NIPS Workshop, 2011.

[4] Abhishek Das, Satwik Kottur, José M.F. Moura, Stefan Lee, and Dhruv Batra. Learning
cooperative visual dialog agents with deep reinforcement learning. In International Conference
on Computer Vision (ICCV), 2017.

[5] Harm de Vries, Florian Strub, Sarath Chandar, Olivier Pietquin, Hugo Larochelle, and Aaron C.
Courville. Guesswhat?! visual object discovery through multi-modal dialogue. In Conference
on Computer Vision and Pattern Recognition (CVPR), 2017.

[6] Thomas Degris, Martha White, and Richard S Sutton. Off-policy actor-critic. In International
Conference on Machine Learning (ICML), 2012.

[7] Matthias J Gruber, Maureen Ritchey, Shao-Fang Wang, Manoj K Doss, and Charan Ranganath.
Post-learning hippocampal dynamics promote preferential retention of rewarding events. Neuron,
2016.

[8] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
1997.

[9] Tang Jie and Pieter Abbeel. On a connection between importance sampling and the likelihood
ratio policy gradient. In Advances in Neural Information Processing Systems (NIPS), 2010.

[10] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,
2015.

[11] Mike Lewis, Denis Yarats, Yann N Dauphin, Devi Parikh, and Dhruv Batra. Deal or no deal?
end-to-end learning for negotiation dialogues. arXiv preprint arXiv:1706.05125, 2017.

[12] Jianhua Lin. Divergence measures based on the shannon entropy. IEEE Transactions on
Information theory, 1991.

[13] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pages 740–755. Springer, 2014.

[14] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur. Recur-
rent neural network based language model. In Interspeech, 2010.

[15] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[16] Art B. Owen. Monte Carlo theory, methods and examples. 2013.

[17] Paul Hongsuck Seo, Andreas Lehrmann, Bohyung Han, and Leonid Sigal. Visual reference
resolution using attention memory for visual dialog. In Advances in Neural Information
Processing Systems, 2017.

[18] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mas-
tering the game of go with deep neural networks and tree search. Nature, 529(7587):484–489,
2016.

[19] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

5

[20] Florian Strub and Harm de Vries. Guesswhat?! models. https://github.com/
GuessWhatGame/guesswhat/, 2017.

[21] Florian Strub, Harm de Vries, Jérémie Mary, Bilal Piot, Aaron C. Courville, and Olivier
Pietquin. End-to-end optimization of goal-driven and visually grounded dialogue systems. In
International Joint Conference on Artificial Intelligence (IJCAI), 2017.

[22] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, pages 3104–3112, 2014.

[23] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction (Second
Edition). MIT press, 2018.

[24] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A neural
image caption generator. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 3156–3164, 2015.

[25] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 1992.

6

https://github.com/GuessWhatGame/guesswhat/
https://github.com/GuessWhatGame/guesswhat/

6 Appendix

6.1 MNIST GuessNumber Gameplay

Environment Agent

QuestionerAnswerer

Guesser

Figure 3: GuessNumber Gameplay: The gameplay of the guessing game involves three plays, a questioner,
an answerer, and a guesser. In our settings, we first pretrain all three models, then post-train only the questioner
using RL. For each gameplay, the questioner first asks a question word by word, a1,1, a1,2, ..., ?, then the
answerer responses with an answer, A1. This question-answering repeats for a predefined number of rounds.
Finally, the guesser reads in the dialog and makes a guess. If the guess is correct, then the questioner receives a
reward r = 1, otherwise, r = 0.

6.2 Complete Training Algorithm

Algorithm 1 Positive Memory Retention (PMR)

Require: pretrained RNN language model πθ
1: for iteration in range(max iterations) do
2: for t = 1 to T do
3: (at, pt) = πθ(x, yt−1), yt = (yt−1, at)

4: r = R(y)← Environment
5: for t = T to 1 do
6: θ = θ + α(r − b)∇θlogπθ(at|(x, yt−1))

7: if r > 0 then
8: memory← τ = (x, y, p, r)

9: validating(πθ), θ′ = θ
10: for trajectory τ in memory do # memory retention
11: x, y, p, r ← τ
12: for t = 1 to T do
13: qt = pt, (at, pt) = πθ(x, yt−1)
14: memory← pt # probability updating
15: ω =

∏T
t=1 pt/

∏T
t=1 qt

16: if ω ∈ [1/ωmax, ωmax] then
17: for t = T to 1 do
18: θ = θ + αω(r − b)∇θlogπθ(at|(x, yt−1))

19: validating(πθ)
20: if no improvement for nmax iterations then
21: θ = θ′

22: if improvement then
23: θ′ = θ

6.3 Ablation tests

A summary of the ablation tests is shown in Table 1. We can see that the bounded importance
weight proposal is critical for policy gradient with importance sampling. Without this component,
the model diverges quickly, shown in Table 1 (# 3-4). The other proposed innovations all improve
model performance as well, as shown in Table 1 (# 5-9). One can also see that the choice of the bound
parameter ωmax has a major influence on the performance.

7

Table 1: Ablation tests on MNIST GuessNumber: Notations: RF denotes the REINFORCE; IS is importance
sampling; PM means using positive memory only, otherwise all memory; UB denotes the upper bound ωmax;
LB represents the lower bound 1/ωmax; PB is the probability updating trick: ES means the early stopping within
epochs, if use ES, then the early stopping threshold is 2, otherwise train for 3 iterations; (%) is the accuracy on
the test split using the best model selected via validation split during 10 epochs of training. The upper part
above the middle horizontal line shows the ablation test of different components in the positive memory retention.
Here, ωmax = 10, and (# 1) is the performance of the kickstart policy after supervised training. Note that (# 3)
and (# 4) diverges quickly, which means that the testing accuracies are lower than 20.0% after 10 epochs of
training. UB makes the stable training of RF+IS possible, shown in (# 5). PM, LB, PB, ES, contribute 0.76%,
1.18%, 0.73%, and 1.54%, respectively. The lower part below the middle horizontal line shows the extensive
evaluation regarding to the upper bound parameter ωmax.

RF IS PM UB LB PB ES (%)

1 – – – – – – – 63.09
2 X – – – – – – 65.40
3 X X – – – – – < 20.
4 X X X – – – – < 20.
5 X X – X – – – 66.06
6 X X – X X – – 67.24
7 X X X X X – – 68.00
8 X X X X X X – 68.73
9 X X X X X X X 70.27
10 X X X 1 X X X 66.24
11 X X X 5 X X X 65.69
12 X X X 10 X X X 70.27
13 X X X 20 X X X 69.38
14 X X X 30 X X X 69.09
15 X X X 100 X X X 65.39

6.4 Experiment Details

In this section, we illustrate the experiment details about the MNIST GuessNumber dataset and
the GuessWhat?! game, respectively. Our implementation is available at https://github.com/
ruizhaogit/PositiveMemoryRetention.

6.4.1 MNIST GuessNumber Dataset

Game Generation: Given the generated image from MNIST GuessNumber, we automatically
generate questions and answers about a set of the digits in the grid that focus on one of the four
attributes. During question generation, the target subset for a question is selected based on the
previous target subset referred by the previous QA, as shown in Figure 1. For answer generation, we
generate a yes/no answer based on whether the questioned attribute matches with the target digit. The
QA is repeated until there is only one digit in the target subset. We generated 30 K, 10 K, and 10 K
images for training, validating, and testing, respectively, and one successful game for each unique
image. In each grid image, there are nine cells. Each cell contains four attributes, including the color,
bgcolor, number, and the style.

Model details and pretraining: There are three roles in this number guessing game, a questioner,
an answerer, and a guesser. The word and the image embeddings are trained end-to-end using lookup
table layers. The questioner model that we used is a long short-term memory (LSTM) [8] of 256
units conditioned on a given image. The answerer model takes in the question along with the target
digit and outputs a yes/no answer. The answer model is based on an LSTM with 64 units. The last
one is the guesser model. The guesser uses an LSTM with 64 units to process the whole dialog,
and compares it with each digit using a dot product on their respective latent representations. The
prediction is the most similar digit. We train all three models for 30 epochs using the maximum
likelihood criterion. The pretrained models obtain a game success rate of 63.09% on the test split
with a maximum of four rounds of QA.

Reinforced training: After pretraining, we keep the answerer and the guesser fixed and train the
questioner model with RL. Given the unique images in the training set, for each game, the answerer
randomly picks a digit in the image as the target and lets the questioner ask. The baseline method is

8

https://github.com/ruizhaogit/PositiveMemoryRetention
https://github.com/ruizhaogit/PositiveMemoryRetention

the REINFORCE. For positive memory retention, we set the parameter ωmax = 10, and the early
stopping threshed nmax = 2. The ωmax is selected on the validation set. An extensive evaluation
of the impact of ωmax is shown in Table 1 lower part. When we use ωmax = 10, we observe that
about 65% of the positive trajectories are used for weight updating. So, ωmax can be considered as
a trade-off between sample reuse ratio and the variance introduced by importance sampling. The
early stopping threshed nmax is a trade-off between sample-efficiency and computational power. Our
implementation uses Torch7 [3].

6.4.2 GuessWhat?! Game

Model details and pretraining: Each game in the GuessWhat?! contains three roles, a questioner,
an answerer, and a guesser. As our aim is to compare the sample-efficiency of our proposed model
with other strong baselines, we use the same model structure as was used in [21]. The questioner
model is a one layer LSTM with 512 units and conditioned on the VGG16-CNN-FC8 [19] features
of the image. The answerer model deploys an LSTM with 512 units to process the question along
with spatial and categorical information of the target object. The guesser model uses an LSTM to
process the whole dialog and can consider all the spatial and categorical information of the objects in
the image. The guesser compares the similarities between the dialog representation and each object
representation with a dot product, and then takes the guess. All these three models are pretrained
with MLE for 30 epochs for a kickstart policy. We reproduced the paper’s experimental results using
Torch7 [3], and obtained 41.41% accuracy on the test split after supervised training.

Reinforced training: With the pretrained models, we keep the answerer and the guesser fixed
and train the questioner model. We train the model for 100 epochs, using REINFORCE with a
learning rate α of 0.0001 and a running average as the baseline b. Our reimplementation using
Torch obtains 62.61% accuracy on the test split, about 2% higher than their result of 60.3% from the
original implementation [20], due to some technical differences. We use our reimplementation as the
REINFORCE baseline, in Figure 2, to eliminate the influence of these technical differences for a fair
comparison. For positive memory retention, Algorithm 1, we use weight bound ωmax = 5, so that
ω ∈ [1/5, 5], to stabilize the training. We use the early stopping threshed in each epoch as nmax = 2.
We observe that with ωmax = 5, about 85% of the trajectories in the memory contribute to the model
weight updates. This high ratio of reuse is also due to the probability updating mechanism, which
bridges the gap between the behavior policies and the target policy.

9

	Introduction
	Background
	Positive Memory Retention
	Experiments
	Conclusion
	Appendix
	MNIST GuessNumber Gameplay
	Complete Training Algorithm
	Ablation tests
	Experiment Details
	MNIST GuessNumber Dataset
	GuessWhat?! Game

