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Abstract

Individual neurons in convolutional neural networks supervised for image-level
classification tasks have been shown to implicitly learn semantically meaningful
concepts ranging from simple textures and shapes to whole or partial objects —
forming a “dictionary” of concepts acquired through the learning process. In
this work we introduce a simple, efficient zero-shot learning approach based on
this observation. Our approach, which we call Neuron Importance-Aware Weight
Transfer (NIWT), learns to map domain knowledge about novel classes onto
this dictionary of learned concepts and then optimizes for network parameters
that can effectively combine these concepts — essentially learning classifiers by
discovering and composing learned semantic concepts in deep networks. In addition
to demonstrating improvements on the generalized zero-shot learning benchmark,
we show that by having an additional component which requires grounding neuron-
level concepts in human-interpretable semantics, we can also interpret the decisions
made by the learned classifiers at a fine-grained level of neurons.

Our code is available at https://github.com/ramprs/neuron-importance-zsl.

1 Introduction

Deep neural networks have pushed the boundaries of standard classification tasks in the past few
years, with performance on many challenging benchmarks reaching near human-level accuracies.
One caveat however is that these deep models require massive labeled datasets — failing to generalize
from few examples or descriptions of unseen classes like humans can. To close this gap, the task of
learning deep classifiers for unseen classes from external domain knowledge alone — termed zero-shot
learning (ZSL) — has been the topic of increased interest within the community [17, 16, 10, 21, 29,
36,31,2,11, 3,25,5, 14].

As humans, much of the way we acquire and transfer knowledge about novel concepts is in reference
to or via composition of concepts which are already known. For instance, upon hearing that “A Red
Bellied Woodpecker is a small, round bird with a white breast, red crown, and spotted wings.”, we
can compose our understanding of colors and birds to imagine how we might distinguish such an
animal from other birds. However, applying a similar compositional learning strategy for deep neural
networks has proven challenging.

While individual neurons in deep networks have been shown to learn localized, semantic concepts,
these units lack referable groundings — i.e. even if a network contains units sensitive to “white breast”
and “red crown”, there is no explicit mapping of these neurons to the relevant language name or
description. This observation encouraged prior work in interpretability to crowd-source “neuron
names” to discover these groundings [4]. However, this annotation process is model dependent and
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Figure 1: We present our Neuron Importance-Aware Weight Transfer (NIWT) approach which maps free-form
domain knowledge about unseen classes to relevant concept-sensitive neurons within a pretrained deep network.
‘We then optimize the weights of a novel classifier such that the activation of this set of neurons results in high
output scores for the unseen classes in the generalized zero-shot learning setting.

needs to be re-executed for each model trained, which makes it expensive and impractical. Moreover,
even if given perfect “neuron names”, it is an open question how to leverage this neuron-level
descriptive supervision to train novel classifiers. This question is at the heart of our approach.

Many existing zero-shot learning approaches make use of deep features (i.e. vectors of activations
from some late layer in a network pretrained on some large-scale task) to learn joint embeddings with
class descriptions [32, 1, 3, 5, 23, 8, 9, 7]. These higher-level features collapse many underlying
concepts in the pursuit of class discrimination; consequentially, accessing lower-level concepts and
recombining them in new ways to represent novel classes is difficult with these features. Mapping
class descriptions to lower-level activations directly on the other hand is complicated by the high
intra-class variance of activations due to both spatial and visual differences within instances of a
class. Our goal is to address these challenges by grounding class descriptions (including attributes
and free-form text) to the importance of lower-layer neurons to final network decisions [26].

In our approach, which we call Neuron Importance-based Weight Transfer (NIWT), we learn a
mapping between class-specific domain knowledge and the importances of individual neurons within
a deep network. This mapping is learnt using images (to compute neuron-importance) and correspond-
ing domain knowledge representation(s) of training classes. We then use this learned mapping to
predict neuron importances from knowledge about unseen classes and optimize classification weights
such that the resulting network aligns with the predicted importances. In other words, based on
domain-knowledge of the unseen categories, we can predict which low-level neurons should matter in
the final classification decision. We can then learn network weights such that the neurons predicted to
matter actually do contribute to the final decision. In this way, we connect the description of a previous
unseen category to weights of a classifier that can predict this category at test time — all without
having seen a single image from this category. To the best of our knowledge, this is the first zero-shot
learning approach to align domain knowledge to intermediate neurons within a deep network. As an
additional benefit, the learned mapping from domain knowledge to neuron importances grounds the
neurons in interpretable semantics; automatically performing neuron naming.

We focus on the challenging generalized zero-shot (GZSL) learning setting. Unlike standard ZSL
settings which evaluate performance only on unseen classes, GZSL considers both unseen and seen
classes to measure the performance. In effect, GZSL is made more challenging by dropping the
unrealistic assumption that test instances are known a priori to be from unseen classes in standard
ZSL. We validate our approach across two standard datasets - Caltech-UCSD Birds (CUB) [30] and
Animals with Attributes 2 (AWA?2) [32] - showing improved performance over existing methods.
Moreover, we examine the quality of our grounded explanations for classifier decisions through
textual and visual examples.

Contributions. Concretely, we make the following contributions in this work:

o We introduce a zero-short learning approach based on mapping unseen class descriptions to neuron
importance within a deep network and then optimizing unseen classifier weights to effectively
combine these concepts. We demonstrate the effectiveness of our approach by reporting improve-
ments on the generalized zero-shot benchmark on CUB and AWA2. We also show our approach
can handle arbitrary forms of domain knowledge including attributes and captions.

o In contrast to existing approaches, our method is capable of explaining its zero-shot predictions
with human-interpretable semantics from attributes. We show how inverse mappings from neuron
importance to domain knowledge can also be learned to provide interpretable visual and textual
explanations for the decisions made by newly learned classifiers for seen and unseen classes.
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Figure 2: Our Nelfrc))n Importance-Aware Weight Tra(ns)fer (NIWT) approach can be broken down in to three
stages. a) class-specific neuron importances are extracted for seen classes at a fixed layer, b) a linear transform is
learned to project free-form domain knowledge to these extracted importances, and c) weights for new classifiers
are optimized such that neuron importances match those predicted by this mapping for unseen classes.

2 Related Work

Model Interpretability. Our method aligns human interpretable domain knowledge to neurons
within deep neural networks, instilling these neurons with understandable semantic meanings. There
has been significant recent interest in building machine learning models that are transparent and
interpretable in their decision making process. For deep networks, several works propose explanations
based on internal states or structures of the network [34, 12, 37, 26]. Most related to our work is the
approach of Selvaraju et al. [26] which computes neuron importance as part of a visual explanation
pipeline. In this work, we leverage these importance scores to embed free-form domain knowledge to
individual neurons in a deep network and train new classifiers based on this information. In contrast,
Grad-CAM [26] simply visualizes the importance of input regions.

Attribute or Text-based Zero Shot Learning. One long-pursued approach for zero-shot learning is
to leverage knowledge about common attributes and shared parts (e.g., furry, in addition to being
simpler and more efficient [25, 3, 2, 32]. Leveraging pure textual descriptions instead of attributes to
design zero-shot classifiers for novel classes has also been a significantly popular approach in the
computer vision community [8, 25, 18, 7]. The description of a new category in such situations could
be extracted easily by just mining article(s) from the web (e.g., Wikipedia) or crowdsourcing natural
language descriptions [24]. These approaches primarily rely on learning a similarity function between
class-level descriptions (attributes or otherwise) and images (either linearly [8, 25] or non-linearly —
deep neural networks [18], kernels [7]).

In contrast to these approaches, we directly map external domain knowledge (text-based or otherwise)
to internal components (neurons) of deep neural networks rather than learning associative mappings
between images and text — inherently providing interpretability for our novel classifiers.

3 Neuron Importance-Aware Weight Transfer (NIWT)

In this section, we describe our proposed approach — Neuron Importance-Aware Weight Transfer
(NIWT). At a high level, NIWT maps free-form domain knowledge to neurons within a deep
network and then learns classifiers based on novel class descriptions which respect these groundings.
Concretely, NIWT consists of three steps: (1) estimating the importance of individual neuron(s)
at a fixed layer w.r.t. the decisions made by the network for the seen classes (see Figure 2a), (2)
learning a mapping between domain knowledge and these neuron-importances (see Figure 2b), and
(3) optimizing classifier weights with respect to predicted neuron-importances for unseen classes (see
Figure 2c). We discuss each of these stages in the following sections.

3.1 Preliminaries: Generalized Zero-Shot Learning (GZSL)

Consider a dataset D = {(x;,;)}}¥.; comprised of example input-output pairs from a set of seen
classes S = {1,...,s} and unseen classes U = {s+1,...,s+u}. For convenience, we use the
subscripts S and U to indicate subsets corresponding to seen and unseen classes respectively, e.g.
Ds = {(z4,v:) | yi € S}. Further, assume there exists domain knowledge K = {k1,..., kst }
corresponding to each class (e.g. class level attributes or natural language descriptions). Concisely,
the goal of generalized zero-shot learning is then to learn a mapping f : X — S U from the input
space & to the combined set of seen and unseen class labels using only the domain knowledge X and
instances Dgs belonging to the seen classes.

3.2 Class-dependent Neuron Importance

Class descriptions capture salient concepts about the content of corresponding images — for example,
descriptions regarding the coloration and shape of a bird’s head. Similarly, a trained classifier
must also learn discriminative visual concepts in order to succeed; however, these concepts are not
grounded in human interpretable language. In this stage, we identify neurons corresponding to these
discriminative concepts before aligning them with domain knowledge in Section 3.3.



Consider a deep neural network NETs(+) trained for classification which predicts scores {o. | ¢ € S}
for seen classes S. One intuitive measure of a neuron n’s importance to the final score o, is simply
the gradient of o, with respect to the neuron’s activation a™ (where n indexes the channel dimension).
For networks containing convolutional units (which are replicated spatially), we follow [26] and
simply compute importance as the mean gradient (along spatial dimensions), writing the neuron

importance o as
global average pooling
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where ;' ; is the activation of neuron n at spatial position ¢, j. For a given input, the importance of
every neuron in the network can be computed for a given class via a single backward pass followed
by a global average pooling operation for convolutional units. In practice, we focus on a’s from
single layers in the network in our experiments. We note that other measures of neuron importance
have been proposed [33, 15] in various contexts; however, this simple gradient-based importance

measure has some notable properties which we leverage.

Firstly, we find gradient-based importance scores to be quite consistent across images of the same
class despite the visual variation between instances, and likewise to correlate poorly across classes.
To assess this quantitatively, we computed a’s for neurons in the final convolutional layer of a
convolutional neural network trained on a fine-grained multi-class task (conv5-3 of VGG-16 [27]
trained on AWA?2 [32]) for 10,000 randomly selected images. We observed an average rank correlation
of 0.817 for instances within the same class and 0.076 across pairs of classes. This relative invariance
of a’s to intra-class input variation may be due in part to the piece-wise linear decision boundaries in
networks using ReLU [20] activations. As shown in [22], transitions between these linear regions are
much less frequent between same-class inputs than across classes. Within the same linear region,
activation gradients (and hence «’s) are trivially identical.

Secondly, this measure is fully differentiable with respect to model parameters which we leverage to
learn novel classifiers with gradient methods (see Section 3.4).

3.3 Mapping Domain Knowledge to Neurons

Without loss of generality, consider a single layer L within NETs(+). Given an instance (x;,y;) € Ds,
leta, = {a? | n € L} be a vector of importances computed for neurons in L with respect to class
c when z; is passed through the network. In this section, we learn a simple linear mapping from
domain knowledge to these importance vectors — aligning interpretable semantics with individual
neurons.

We first compute the importance vector a,,, for each seen class instance (z;, y;) and match it with
the domain knowledge representation k,, of the corresponding class. Given this dataset of (ay, , ky, )
pairs, we learn a linear transform Wy-_,, to map domain knowledge to importances. As importances
are gradient based, we penalize errors in the predicted importances based on cosine distance —
emphasizing alignment over magnitude. We minimize the cosine distance loss as

_ (WIC—m ) kyq) Ay,
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via gradient descent to estimate Wy _,,. We stop training when average rank-correlation of predicted
and true importance vectors stabilizes for a set of held out validation classes from S.

L(ay, ky,) =1

) 2

Notably, this is a one-to-many mapping — the domain knowledge of one class needing to predict many
different importance vectors. Despite this, this mapping achieves average rank correlations of 0.2 to
0.5 for validation class instances. We explore the impact of error in importance vector prediction on
weight optimization in Section 3.4. We also note that this simple linear mapping can also be learned
in an inverse fashion, mapping neuron importances back to semantic concepts within the domain
knowledge (which we explore in Section 6).

3.4 Neuron Importance to Classifier Weights

Here we use predicted importances to learn classifiers for the unseen classes. As these new classifiers
will be built atop the trained seen-class network NET s, we modify NET s to extend the output space to
include the unseen class — expanding the final fully-connected layer to include additional neurons
with weight vectors w!, ..., w* for the unseen classes such that the network now additionally
outputs scores {o. | ¢ € U}. We refer to this expanded network as NETg ;. At this stage, the



weights for the unseen classes are sampled randomly from a multivariate normal distribution with
parameters estimated from the seen class weights and as such the output scores are uncalibrated and
uninformative.

Given the learned mapping Wi, 4 and unseen class domain knowledge K/, we can predict unseen
class importances A;; = {ay,...,a, } with the importance vector for unseen class ¢ predicted as
a. = Wi k. For a given input, we can compute importance vectors a. for each unseen class
c. As a° is a function of the weight parameters w,, we can simply supervise a. with the predicted
importances a. and optimize w® with gradient descent — minimizing the cosine distance loss between
predicted and observed importance vectors. However, the cosine distance loss does not account for
scale and without regularization the scale of weights (consequentially the outputs) of seen and unseen
classes might vary drastically, resulting in bias towards one set or the other.

To address this problem, we introduce a Lo regularization term which constrains the learned unseen
weights to be a similar scale as the mean of seen weights ws. We write the final objective as

Ac - Ac
2l flac|

where ) is controls the strength of this regularization. We examine the effect of this trade-off in
Section 5.1, finding training to be robust to a wide range of A values. We note that as observed
importances a® are themselves computed from network gradients, updating weights based on this
loss requires computing a Hessian-vector product; however, this is relatively efficient as the number
of weights for each unseen class is small and independent of those for other classes.

‘C(écyac) =1- + AHWC _WS||7 (3)

Training Images. Note that to perform the optimization described above, we need to pass images
through the network to compute importance vectors. We observe importances to be only weakly
correlated with image features and find they can be computed for any of the unseen classes irrespective
of the input image class — as such, we find simply inputing images with natural statistics to be sufficient.
Specifically, we pair random images from ImageNet [6] with random tuples (&, k) to perform the
importance to weight optimization.

4 Experiments

In this section, we evaluate our approach on generalized zero-shot learning (GZSL) (Section 4.1) and
present analyses for different stages of NIWT (Section 5).

4.1 Experimental Setting
Datasets and Metrics. We conduct our GZSL experiments on the following datasets.

e Animals with Attributes 2 (AWA?2) [32] — The AWA?2 dataset consists of 37,322 images
of 50 animal species (on average 764 per class but with a wide range). Each class is labeled
with 85 binary and continuous attributes.

e Caltech-UCSD Birds 200 (CUB) [30] — The CUB dataset consists of 11788 images
corresponding to 200 species of birds. Each image and each species has been annotated
with 312 binary and continuous attribute labels respectively. These attributes describe
fine-grained physical bird features such as the color and shape of specific body parts.
Additionally, each image is associated with 10 human captions [24].

For both datasets, we use the GZSL splits proposed in [32] which ensure that no unseen class occurs
within the ImageNet [6] dataset (commonly used for training classification networks for feature
extraction). As in [31], we evaluate our approach using class-normalized accuracy computed over
both seen and unseen classes (i.e. 200-way for CUB) — breaking the results down into unseen accuracy
Accy, seen accuracy Accg, and the harmonic mean of the two, H.

Models. We experiment with ResNet101 [13] and VGG16 [28] models pretrained on ImageNet [6]
and fine-tuned on the seen classes. For each, we train a version by finetuning all layers and another
by updating only the final classification weights. Compared to ResNet, where we see sharp declines
for fixed models (60.6% finetuned vs 28.26% fixed for CUB and 90.10% vs 70.7% for AWA2), VGG
achieves similar accuracies for both finetuned and fixed settings (74.84% finetuned vs 66.8% fixed
for CUB and 92.32% vs 91.44% for AWA?2).

NIWT Settings. To learn the mapping Wi_,,, we hold out five seen classes and stop optimization
when rank correlation between observed and predicted importances is highest. For attribute vec-
tors, we use the class level attributes directly and for captions on CUB we use average word2vec
embeddings[19] for each class. When optimizing for weights given importances, we stop when
the loss fails to improve by 1% over 40 iterations. We choose values of A (between 1e= to 1e=2),



AWA?2 [32] CUB [30]

Method Accy Accs H Accy Accs H
- ALE[2] 209 88.8 338 247 623 344
fg iﬁ Deep Embed. [35]* 285 823 423 223 451 299
= NIWT-Attributes 216 378 275 102 577 173
= ALE [2]° 227 751 349 241  60.8 345
Z . Deep Embed. [35]" 215 596 316 247 574 345
g ™  NIWT-Attributes 423 388 405 207 418 277
NIWT-Caption N/A 221 257 238
ALE [2]* 179 843 295 222 548 31.6
= § Deep Embed. [35]" 288 817 426 241 452 315
& NIWT-Attributes 438 30.7 36.1 170 546 267
5 ALE [2]* 169 91,5 285 253  62.6 36.0
® [ Deep Embed. [35]" 266 833 382 27.0 497  35.0
> NIWT-Attributes 353 755 481 3.5 449 370
NIWT-Caption N/A 159 465 236

Table 1: Generalized Zero-Shot Learning performances on the proposed splits [32] for AWA?2 and CUB. We
report class-normalized accuracies on seen and unseen classes and harmonic mean. * based on code provided by
the authors by tuning hyper-parameters on the test-set to convey an upper-bound of performance.

learning rate (1e~° to le~2) and the batch size ({16, 32, 64}) by grid search on H for a disjoint set of
validation classes sampled from the seen classes of the proposed splits [32] (see Table. 1).

Baselines. We compare NIWT with two well-performing zero-shot learning approaches — ALE [2]
and Deep Embed. [35]. While the former relies on learning compatibility functions for class labels
and visual features the latter leverages deep networks, jointly aligning domain knowledge with deep
features end-to-end. For the mentioned baselines, we utilize code provided by the authors and report
results by directly tuning hyper-parameters on the test-set to convey an upper-bound of performance.

4.2 Results
Our results are summarized in Table 1. Some notable trends are,

1. NIWT shows improvements on the generalized zero-shot learning benchmark. For both
datasets, NIWT-Attributes based on VGG establishes a new state of the art for harmonic mean
(48.1% for AWA?2 and 37.0% for CUB). For AWA2, this corresponds to a ~ 10% improve-
ment over prior state-of-the-art which is based on deep feature embeddings — implying that
grounding domain knowledge to internal neurons of a network can indeed lead to improved results.

2. Seen-class finetuning yields improved harmonic mean H. For the CUB and AWA2
datasets, finetuning the VGG network on seen class images offers significant gains for NIWT
(26.7%—37.0% H and 36.1%—48.1% H respectively); finetuning ResNet sees similar gains
(17.3%—27.7% H on CUB and 27.5%—40.5 %H on AWA2). Notably, these trends seem
inconsistent for the compared methods.

3. NIWT effectively grounds both attributes and free-form language. We see reasonably strong
performance for captions in addition to attributes across both networks (37.0% and 23.6% H for
VGG and 27.7% and 23.8% H for ResNet). We note that we use relatively simple, class-averaged
representations for captioning which may contribute to the lower absolute performance.

5 Analysis

To better understand the different stages of NIWT, we perform a series of experiments to analyze
isolated components in our approach.

5.1 Effect of Regularization Coefficient ).

One key component to our importance to weight optimization is the regularizer which enforces that
learned unseen weights be close to the mean seen class weight — avoiding arbitrary scaling of the
learned weights and the bias this could introduce. To explore the effect of the regularizer, we vary the
coefficient A (0 to 1e~2) and observe variations in Accs and Accy, (see Fig. 3b).
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Figure 3: Analysis of the importance vector to weight optimization for VGG-16 trained on AWA?2 (a). We find
that ground-truth weights can be recovered for a pre-trained network even in the face of high magnitude noise.
(b) We also show the importance of the regularization term to final model performance.

Without regularization (A=0) the unseen weights tend to be a bit too small and achieve an unseen
accuracy of only 33.9% on AWA2. As A is increased the unseen accuracy grows until peaking at
A=1e~° with an unseen accuracy of 41.3% — an improvement of over 8% from the unregularized
version! Of course, this improvement comes with a trade-off in seen accuracy of about 3% over the
same interval. As \ grows larger >1e~*, the regularization constraint becomes too strong and NIWT
has trouble learning anything substantial for the unseen classes.

5.2 Noise Tolerance in Neuron Importance to weight optimization

Recall that NIWT inherently relies on grounding human-interpretable semantic concepts in the
neurons of a deep network (see Sec. 3.3) — allowing us to have a representation of the sub-level
concepts in a network in the corresponding referable domain. Due to the inherent noise involved in
the mapping Wy _, 4, the classifiers obtained for unseen classes in the expanded network NET ;4 are
not perfect. In order to judge the capacity of the optimization procedure, we experiment with a toy
setting where we initialize an unseen classifier head with the same dimensionality as the seen classes
and try to explicitly recover the seen class weights with supervision only from the oracle a. obtained
from the seen classifier head for the seen classes. To simulate for the error involved in estimating
a., we add increasing levels of zero-centered gaussian noise and study recovery performance in
terms of accuracy of the recovered classifier head on the seen-test split. That is, the supervision from
importance vectors is constructed as follows:

a. =a; +¢llas|[;z suchthat z~ N(0,I) 4)
We operate at different values of €, characterizing different levels of corruption of the supervision
from a, and observe recovery performance in terms of accuracy of the recovered classifier head.
3a shows the effect of noise on the ability to recover seen classifier weights (£c7) for a VGG-16
network trained on 40 seen classes of AWA?2 dataset with the same objective as the one used for
unseen classes.

In the absence of noise over a. supervision, we find that we are exactly able to recover the seen class
weights and are able to preserve the pre-trained accuracy on seen classes. Even with a noise-level
of e=10 (or adding noise with a magnitude 10x the average norm of a.), we observe only minor
reduction in the accuracy of the recovered seen class weights — implying the importance vector to
weight optimization process is quite robust to fairly extreme noise. As expected, this downward
trend continues as we increase the noise-level until we reach almost chance-level performance on the
recovered classifier head.

5.3 Network Depth of Importance Extraction.

In this section, we explore the sensitivity of NIWT with respect to the layer from which we extract
importance vectors in the convolutional network. As an experiment (in addition to Table 1) we
evaluate NIWT on AWA?2 with importance vectors extracted at different convolutional layers of
VGG-16. We observe that out of those we experimented with conv5_3 performs the best with
H = 48.1 followed by conv4_3 (H = 39.3), conv3_3 (H = 35.5), conv2_2 (H = 23.8) and conv2_1
(H = 20.8). We also experimented with the fully-connected layers £c6 and £c7 resulting in values of
H being 40.2 and 1 respectively.

Note that performing NIWT on importance vectors extracted from the penultimate layer f£c7 is
equivalent to learning the unseen head classifier weights directly from the domain space representation
(k.). Consistent with our hypothesis, this performs very poorly across all the metrics with almost no
learning involved for the unseen classes at all. Though we note that to some extent this could also be
attributed to the restricted capacity of the linear transformation Wi _, 4 involved in the process.
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GT Class  Original Image Visual Explanations Text Explanations Important neurons with corresponding activation maps

neuron_id =145 neuron_id =299 neuron_id =20

has_eye_color has_crown_color has_wing_color
black yellow

1

has_eye_color = black,
has_underparts_color =white,
has_belly_color =white,
has_breast_color =white,
has_breast_pattern = solid

Yellow-headed
blackbird

neuron_id= 145 neuron_id=126 neuron_id=20
has_eye_color has_throat_color has_wing_color
black yellow black

has_eye_color = black,
has_throat_color = yellow,
has_wing_color = black,
has_upperparts_color =black,
has_bill_color = black

Yellow-headed
blackbird

neuron_id=131 neuron_id =259 neuron_id=193
has_throat_color has_primary_color has_nape_color

black black black

has_throat_color = black,
has_primary_color =black,
has_nape_color = black,
has_forehead_color = black,
has_crown_color =black

Groove-billed
Ani

neuron_id =131 neuron_id=116 neuron_id = 50
has_throat_color has_breast_color has_underparts_color
black black i black

has_throat_color = black,
has_breast_color =black,
has_nape_color = black,
has_primary_color = black,
has_forehead_color = black

Groove-billed
Ani

neuron_id= 145 neuron_id=126 neuron_id =20
has_throat_color
yellow

has_wing_color
black

has_eye_color
black

has_eye_color = black,
has_throat_color = yellow,

REllcrahcades has_wing_color = black,

blackbird
has_breast_color =yellow,
has_bill_color = black
neuron_id =305 neuron_id =132 neuron_id =4
has_crown_color has_throat_color has_bill_shape
hite white hooked_seabird
has_forehead_color = white, L
has_crown_color = white,
Northern has_throat_color = white,
Fulmer

has_bill_shape = hooked_seabird,
has_nape_color = white

neuron_id=126 neuron_id= 45 neuron_id=111
has_throat_color has_underparts_color  has_breast_color
yellow yellow yellow
has_eye_color = black,
has_bill_length = shorter_than_head,
has_shape = perching_like,
has_underparts_color = yellow,
has_primary_color = yellow
GT Class: Grad-CAM
Yellow bellied for GT Class = .
Flycatcher neuron_id= 145 neuro If,lt‘l =151 i
has_eye_color has_bill_length has_shape

shorter_than_head perching_like

has_throat_color = yellow,

Eid et s STaleny has_underparts_color = yellow,

throated Vireo has_breast_color = yellow,
has_primary_color = yellow,
has_belly _color =yellow
Grad-CAM for
Predicted Class
(a) (b) (c) (d)

Figure 4: Explanations corresponding to the decisions made by the learned classifier for instances of the unseen
classes on CUB.(a) the ground truth class and image, (b) visual explanations for the GT category, (c) textual
explanations obtained using the inverse mapping W, xc, (d) most important neurons for this decision, associated
names and activation maps. The last 2 rows show a failure case, where the model misclassified the given image.
Explicitly grounding network concepts in referable domains, we can expose the relative focus across fine-grained
concepts composing a class — for the image correctly classified as a yellow-headed blackbird above (row 2),
the visualizations for the class focuses specifically at the union of attributes that comprise the class - black eye,
yellow throat, and black wing.



5.4 Importance to Weight Input Images

Sampling Mode Accy Accs H

Random Normal 23.9 41.0 30.2
ImageNet 31.5 44.9 37.0
Seen-Classes 36.4 40.0 38.1

We show performance with differing input images dur-
ing weight optimization (random noise, ImageNet, and
seen class images) in Table. 2. As expected, perfor-
mance improves as input images more closely resemble
the unseen classes; however, we note that learning oc- Table 2: Results by sampling images from

curs even with random noise images. different sets for NIWT-Attributes on VGG-

CUB.
6 Explaining NIWT

Recall that NIWT involves an explicit learning component that requires us to ground the salient
concepts for a class of interest in the important neurons. Here we explore how a similar grounding
framework would allow us to expose the decision making process of the network for a given instance
at a fine-grained level of neurons — where in addition to grounding the important neurons with respect
to a prediction in human-interpretable semantics, we can also express the relative visual focus across
said concepts. Fig. 4 demonstrates explanations for decisions made by the learned classifiers.

Visual Explanations. Since learning classifiers for the novel classes via NIWT preserves the end-to-
end differentiable nature of the network as a whole, any gradient-based interpretability technique (or
otherwise) is applicable to provide support for decisions made at inference. We use Grad-CAM [26]
on instances of unseen classes to provide explanations for the novel classifier learned via NIWT.
Quantitative results on CUB — characterized by the mean fraction of Grad-CAM activation present
inside the bounding box of the object of interest — indicate that the learned classifier is indeed capable
of focusing on the relevant regions (0.80 %= 0.008 for seen and 0.79 £ 0.005 for unseen classes).

Textual Explanations. In our setup, we frame textual explanations as the problem of retrieving
relevant attributes given the neurons important for a decision made by the network. We instantiate this
as learning an inverse mapping W, _, i — from importance scores a. to associated domain-knowledge
k. — in a manner similar to Sec. 3.3. At inference, for a decision made by the learned classifier,
we retrive the top-5 scoring attributes under W, _,x. Intuitively, a high scoring k. retrieved via
Wa—x from a certain a. emphasizes the relevance of that attribute for the corresponding class c.
Quantitatively, we evaluate the fidelity of the retrieved explanations as the percentage of associated
ground truth attributes for an instance in the retrieved top-k ones — 83.9% for CUB. Qualitatively, the
retrieved explanations correlate well with the associated visual explanations as described above.

Neuron Names and Focus. Treating neuron-names as referable groundings of concepts captured by
a deep convlutional network — we characterize the same as the top-1 textual explanation retrieved for
a single-neuron under W,_, . We instantiate this by feeding a one-hot encoded vector corresponding
to the important neurons one at a time to W, _, i and retrieving the top-scoring k.. In contrast to prior
work, this one-shot process circumvents issues surrounding the collection of expensive annotations or
performing any additional optimization on top of the same. In addition, observing the activation map
of the associated neurons allows us to thereby characterize the focus of the neuron of interest.

7 Conclusion

To summarize, we propose an approach we refer to as Neuron Importance-aware Weight Transfer
(NIWT), that learns to map domain knowledge about novel classes directly to classifier weights
by grounding it into the importance of network neurons. Our weight optimization approach on
this grounding results in classifiers for unseen classes which outperform existing approaches on
the generalized zero-shot learning benchmark. We further demonstrate that this grounding between
language and neurons can also be learned in reverse, linking neurons to human interpretable semantic
concepts, providing visual and textual explanations.
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