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Abstract

In this paper, we present an unsupervised probabilistic framework to grounding
words (e.g., nouns, verbs, adjectives, and prepositions) through visual perception,
and we discuss grammar induction in situated human-robot interaction with the
objective of making a robot able to understand the underlying syntactic structure
of human instructions so as to collaborate with users in space efficiently.

1 INTRODUCTION

Different studies in the related literature of artificial intelligence discussed probabilistic frameworks
for understanding the underlying syntactic structure of language. In cognitive robotics, [16, 26, 2, 1,
18] proposed computational models for grounding nouns, verbs, adjectives, and prepositions encoding
spatial relationships between objects. However, these studies, inter alia, have not discovered grammar
understanding at the phrase level. In computational linguistics, [4, 11] proposed models for inducing
Combinatory Categorial Grammar (CCG); however, they used annotated databases (i.e., each word
has a corresponding syntactic tag as a noun, verb, etc.) for grammar induction. In this study, we
build on the model of Bisk and Hockenmaier [4] for categorial grammar induction, and propose an
extended probabilistic Bayesian framework for unsupervised syntactic grounding of parts of speech!
and grammar induction (based on the grounded parts of speech and without using any annotated
databases) within a cross-situational learning context between a human user and a robot [22, 3]. This
paves the way towards grounding phrases and their induced CCG complex categories so as to allow a
robot to understand phrases (not only words) composing sentences, which constitutes a direction of
future research.

2 RELATED WORK

The “Symbol Grounding” problem was defined by Harnad [14], which refers to assigning a meaning
to a meaningless symbol through interaction with the environment. Tanenhaus et al. [24] discussed
the effect of visual cues on language understanding. Tellex et al. [26] and Dawson et al. [7] proposed

IFor example, the following instruction could be tagged as follows: (Raise, 1) (the, 5) (Red, 2) (Bottle, 4)
(Near, 6) (the, 5) (Box, 4), where these numerical tags represent the syntactic categories of words (i.e., Verb,
Determiner, Adjective, Preposition, and Noun) that would be grounded through visual perception.
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probabilistic frameworks for grounding verbs and prepositions in utterances that encode spatial
relationships between referents and landmarks. Marocco et al. [16] proposed a framework for
grounding action words through sensorimotor interaction with the environment. These interesting
approaches, inter alia, have not discussed inferring grammatical structure of phrases, which constituted
our motivation for the proposed study.

Different approaches to inferring syntactic structure of language have been investigated in the
literature of computational linguistics. Church [6], Brill [5], and Goldwater and Griffiths [13], inter
alia, discussed different approaches - supervised, semi-supervised, and unsupervised - for tagging
parts of speech with syntactic attributes. Klein and Manning [15] proposed a generative model
for learning constituency and dependency in language for unsupervised grammar induction using
induced Part-of-Speech (POS) tags, but they can not detect non-local structures efficiently. Bisk and
Hockenmaier [4], Garrette et al. [11] discussed probabilistic approaches to Combinatory Categorial
Grammar (CCG)? induction; however, these approaches disregarded learning lexical information of
words and used annotated corpora.

In this paper, we bridge between cognitive robotics and computational linguistics, and propose a
generative framework for grounding lexical information of words through visual perception so as
to infer the combinatorial syntactic structure of phrases within a situated human-robot interaction
context. The rest of the paper is organized as follows: Section (3) describes the system architecture,
Section (4) illustrates the visual perceptual system, Sections (5 and 6) describe the lexical tagging of
words and the proposed grounding model, Section (7) presents the experimental setup, Section (8)
introduces the CCG syntactic formalism of language, Section (9) discusses the obtained results, and
Section (10) concludes the paper.

3 SYSTEM ARCHITECTURE

The proposed framework in this study is coordinated through: (1) System for visual perception:
which outputs position coordinates of the human arm joints while manipulating objects, in addition to
position coordinates of objects on a tabletop and their color and geometrical characteristics (Section
4), (2) Systems for syntactic structural representation of language: which represents language through
syntactic tags and combinatorial categories (Sections 5 and 8), and (3) Probabilistic generative model:
which grounds words and their syntactic tags through visual perception (Section 6). The following
sections in the paper discuss the proposed approach in detail.

4 VISUAL PERCEPTUAL INFORMATION

4.1 Skeleton Tracking: Representation of Action Verbs

The left-to-right HMM-based gesture model uses the tracked position coordinates® of the human
right-arm joints (Figure 1) (converted to the local coordinate system of the referent) as observations
[1]. Five HMM models are used to represent five action verbs (Section 7). Each HMM model is
trained, during the cross-situational learning phase [22], on position coordinates of the arm joints
while performing an action in different ways using the Expectation-Maximization (EM) algorithm
[8]. The probabilities of evaluation of the test joint coordinates, through the trained HMM models,
are used to represent actions as observations in the probabilistic grounding model (Section 6).

4.2 Object Segmentation into Point Cloud: Representation of Spatial Concepts

The unsupervised object segmentation model in the framework segments objects lying on a tabletop
into distinct 3D point clouds with centroids representing their coordinates in respect of the robot
camera (Figure 2)*. These coordinates allow the learning model to understand spatial concepts and
relationships between objects. Each point cloud is characterized using its RGB color histogram

2 Steedman [23] introduced the formalism: Combinatory Categorial Grammar (CCG), where each constituent
is associated with a syntactic category that determines its relationship to adjacent constituents in a sentence.

3The 3D tracking system uses the SDK OpenNI2 and the middleware NITE2.

4The model detects the tabletop plane using the RANSAC algorithm [9] and the orthogonal wall planes. The
remaining points in the cloud are voxelized and clustered into distinct blobs representing object candidates.
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Figure 2: Spatial concepts represented through 3D point cloud information.

and the Viewpoint Feature Histogram (VFH) descriptor [20] that could efficiently represent object
geometry and viewpoint while being invariant to scale and pose. Having calculated object locations
and features, the robot employs the probabilistic generative model (Section 6) in order to ground
spatial concepts and object characteristics (i.e., color and geometry) through a cross-situational
learning context with a human tutor in space [22].

S PART-OF-SPEECH TAGGING: UNGROUNDED TAGS OF WORDS

The unsupervised Part-of-Speech (POS) tagging (tags induction) model assigns the numerical syntac-
tic tag T = (#,,...,1,) to the word sequence w = (wy,...,w,). The first-order Hidden Markov Model
(HMM) employs tags as hidden states and words as observations [10]. The probability distribution
(transition) of the hidden tag states of the word sequence w is expressed as follows:

P(ti,...10) = | [PCi16-1) e

The emission distribution of tags over words is expressed through the probability P(w;|t;) of word
w; conditioned on tag #;. The emission and transition parameters (6, ¢) are characterized using
multinomial distributions with Dirichlet priors (ag, @) (K stands for the number of tag states):

a)i| ti=t~ Mult (6;,) , 6 lag ~ Dir (ay)

. 2
t; | tioy =t~ Mult (¢;) , ¢ | ag ~ Dir (ag)

Having an unannotated corpus with a set of m sentences W = {w,,...,wy}, the model assigns the
most likely tag set T = {7,...,7,} - inferred using the Gibbs sampling algorithm [12] - to every
sentence in the untagged corpus so as to maximize the following expression:

rew =[] (Pewieo)= T[] (]l[lp(rin,-_l,@)lp(wi|t,~,et)) @)

(r,w)e(T,W) (r,w)e(T,W) i=1

The calculated numerical tags by the HMM-based tagging model are used as observations in the prob-
abilistic generative model (Section 6) in order to ground words, and tags, through visual perception.

6 WORD GROUNDING: A PROBABILISTIC GENERATIVE MODEL

The generative Bayesian model used for grounding words through visual perception with six observed
states w;, 2!, ap, ¢p, Sp, and g, is illustrated in Figure (3). The parameters of the model are defined in
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Figure 3: Graphical representation of the probabilistic generative model.

Table 1: Definition of the model parameters in the different modalities.

Parameter Definition
o Hyperparameter of the distribution p;
Di Index of spatial relationship (Object A & Object B) of each word
A Hyperparameter of the distribution r;
m; Index of word modality € {Action, Color, Layout, Geometry, Others}
Y Hyperparameter of the distribution 6,, ;
L Number of word distribution categories = K, + K. + K + K¢ + 1
O,z ‘Word distribution over modalities
g Hyperparameter of the distribution 7,
Ba Hyperparameter of the distribution ¢,
K, Number of categories in the action modality
a; Hyperparameter of the distribution 7,
Be Hyperparameter of the distribution ¢,
K. Number of categories in the object color modality
o Hyperparameter of the distribution 7
Bs Hyperparameter of the distribution ¢
K Number of categories in the spatial layout modality
g Hyperparameter of the distribution g
Bg Hyperparameter of the distribution ¢,
K, Number of categories in the object geometry modality
Z5 Index of action categories
Z, Index of object color categories
P& Index of spatial layout categories
Zg Index of object geometry categories

Table (1). The state w; stands for each word in the sequence w = (wy, ..., wy), and the state Zﬁ stands
for syntactic categories of words (Section 5). The state g, stands for the geometrical characteristics
of O observed objects represented through the VFH descriptor (Section 4.2). The state s, stands for
a spatial layout between a referent and a landmark represented through their centroid coordinates
(Section 4.2). The state ¢, stands for the RGB color characteristics of O observed objects (Section
4.2). The state a,, stands for the arm joints locations while making actions on objects (Section 4.1).
Having a spatial configuration between a referent and a landmark, the potential existing relationships
between them could be expressed as follows: Observed Objects O X (O —1). The probabilistic
distributions that characterize the Bayesian generative model are defined as follows (where GIW,
Dir, Cat, and Gauss stand for a Gaussian Inverse-Wishart distribution, a Dirichlet distribution, a
categorical distribution, and a multivariate Gaussian distribution):



Omz,, ~ Diry . Li=(0...1)
¢“’<1 ~ GIW (Ba), K =(,...,K,)
Pex, ~  GIWB), K=(,..., K.)
bse, ~ GIWBy), Ki=(l,...,K)
boe, ~ GIW(B, Ki=(1,...,K,)
Mt ~ Dir() ,  Ks=(1,....Kposmgsats)
Ta ~ Dir (aa)

e ~  Dir(a.)

s ~ Dir (ay)

g ~  Dir(ag)

pi ~  Cat (%) @
m;j ~  Cat (nZ;)

wj ~ Cat (6in,7)

Z‘; ~ Cat (mq)

Z; ~ Cat ()

Z-; ~  Cat (my)

Z§ ~  Cat (7g)

ap ~ Gauss (¢Z;;)

Cp ~ Gauss (¢ZZ)

Sp ~  Gauss ($z3)

8p ~  Gauss (¢Z§',)

The latent variables are inferred using the Gibbs sampling algorithm [12] to allow the model to learn
correspondences between words and their syntactic categories. The resulting grounded categories
of words are: Verb (representing action verbs), Adjective (representing object color), Preposition
(representing spatial prepositions and relationships), Noun (representing object geometry: object
name), and Determiner (representing an others category: the), which are used for grammar induction.

7 EXPERIMENTAL SETUP

A human tutor and the HSR robot (Figure 4) are interacting in front of a table on which there are five
different objects: {Cup, BaLL, BorTLE, Toy, and Box} with five different colors: {GREEN, YELLOW, BLUE,
Rep, and WHrTE} as referents and landmarks. In addition, we use five different prepositions: {ABOVE,
Besipe, NEAR, BEHIND, and INSIDE} to represent spatial relationships between objects. Moreover, the
robot executes five different actions: {Pur, Rarsg, Horp, PuLL, and Pusa} (robot, object). The scenario
of interaction between the tutor and the robot is summarized as follows:

e The tutor teaches the robot different spatial configurations of referents and landmarks lying
in a tabletop - described through 60 sentences - using visual perceptual information (Section
4). The unsupervised POS tagging model calculates numerical tags representing the syntactic
categories of words for every training sentence (Section 5).

e The visual perceptual information characterizes the dynamics of actions, object characteris-
tics, and spatial relationships between objects (Section 4).

e A probabilistic model grounds words through perception in order to define the necessary
atomic categories for unsupervised CCG categories induction (Sections 6 and 8).

e The human tutor uses 30 test sentences describing different spatial layouts of objects in
order to validate the robustness of the word grounding process (Section 9).

8 COMBINATORY CATEGORIAL GRAMMAR: INFERRING
SYNTACTIC STRUCTURE OF PHRASES

Combinatory Categorial Grammar (CCG) is an expressive and a lexicalized syntactic formalism
[23]. Any two syntactic categories amongst the atomic (S, N, and NP), functor (e.g., NP/N), or



Figure 4: The robot achieves the assigned task (i.e., RAISE THE REp BorTLE NEAR THE Box) through
grounding words and the calculated numerical POS tags in visual perception.

modifier (e.g., N/N) categories of neighboring constituents could be combined through a group
of rules [23] so as to create complex categories corresponding to higher level constituents. The
slash operators: “/” indicates forward combination (e.g., an argument follows a functor), and “\”
indicates backward combination (e.g., an argument precedes a functor). The Bayesian nonparametric
HDP-CCG induction model (Figure 5) employs Dirichlet Processes (DP) [25] to generate an infinite
set of CCG categories defined through stick-breaking processes [21] and multinomial distributions
over categories.

RAISE THE RED BOTTLE NEAR THE BOX
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Figure 5: Graphical representation of the HDP-CCG probabilistic generative model and an example
of a resulting CCG parsing through forward and backward application combinators.

Grounding each word and its induced POS tag (Sections 7 and 5) through visual perceptual infor-
mation (Section 4) using the probabilistic generative model (Section 6) produces the categories:
Verb, Determiner, Adjective, Preposition, and Noun. These syntactic categories define the atomic
categories of the CCG formalism’. Having induced these atomic categories, the CCG induction
model [4] learns the latent syntactic structure of sentences in the learning database, and generates
combinatory syntactic categories for sentences in the test database (Section 7) so as to validate the
robustness of the grammar induction process through comparison to a gold-standard parse structure.

9 RESULTS AND DISCUSSION

The framework is evaluated through its ability to induce correct CCG categories using the grounded
POS tags. In this section, we provide evaluation for the accuracies of the different sub-models:

Part-of-Speech Tagging: Table (2) illustrates different measures for evaluating the robustness of the
POS tagging process: V-Measure®, VI-Measure’, and Many-to-One (M-1)-Measure®. Having a
referent and a landmark in each sentence in the corpus, the POS tagging model assigned two different
tags to all referents and landmarks in the corpus (i.e., all referents had a similar tag and all landmarks

SNoun Phrase (NP) = Determiner + Noun (N).

61t measures homogeneity (i.e., optimal case: each cluster (separate word category) contains fewer classes
of tags) and completeness (i.c., optimal case: classes of tags referring to the same cluster are equal) of clusters
and classes [19].

71t measures the variation of information of a clustering solution, so that the more the clustering is complete
(i.e., high V-Measure), the lower the VI-Measure would be [17].

81t measures mapping between clusters and tags.



Table 2: Evaluation of unsupervised POS tagging through different measures.

M-1 Measure (%) V-Measure (%) VI-Measure
100 88,67 0,57

Table 3: Estimation of word modality grounded through visual perception.

Correct Word Grounding (%)
Verb Adjective Preposition Noun (Referent & Landmark)
73,3 100 63,3 71,7

had another similar tag), which could clearly reduce the completeness score (i.e., V-Measure) of
the model. However, this did not affect the accuracy of the word grounding process as the model
reasonably succeeded in clustering both the referents and landmarks in the “Object” category.

Word Grounding: Grounding words and POS tags through visual perception has the objective
of defining word modality and spatial relationships between objects”. Table (3) shows that the
modalities of the different parts of speech (i.e., Verb (Action), Adjective (Color), Noun (Object), and
Preposition) were correctly determined. This finding is explained in Figure (6), which illustrates the
probability distribution of words over the different modalities, and shows that the patterns of data
in the four modalities are highly distinctive, among each other, and appropriately clustered. Table
(4) shows that the model appropriately defined the referent and landmark referring words and the
direction of their spatial relationship (i.e., Referent A & Landmark B) for each preposition.

Red Blue Green Yellow White Cup Toy Ball Box Bottle Inside Behind Near Above Beside Raise Put Hold Pull Push The
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Figure 6: Probability distribution of words over the different modalities (the dark blue color represents
high probability).

CCG Categories Induction: For the CCG induction process, we use the grounded parts of speech
expressed through the standard tag set of the Penn Treebank Project': Verb: VB, Determiner: DT,
Adjective: JJ, Preposition: IN, and Noun: NN as input to the CCG induction model, which learns the
latent syntactic structure of sentences in the learning corpus so as to generate parse trees for sentences
in the test corpus. These syntactic parses are highly dependent on the grounded tags, so that wrong
tags could generate imprecise parse trees. To evaluate the robustness of the CCG induction process,
we use a gold-standard parse file of all sentences in the test corpus to compare against. This file
contains correct POS tags and dependency relations between words in each sentence that indicate
edges of standard parse trees!!. We compare these edges to those resulting from the CCG model’s
predicted parses by calculating the number of matching edges.

Table (5) illustrate the accuracy of CCG categories induction in case of the grounded and gold-POS
tags. It illustrates the ability of the framework to associate correct word and tag grounding to grammar

9Despite the rich literature in language grounding, we could not find a similar study in the approach,
experimental setup, or corpus to the current one, which makes comparing these results to those of the other
studies difficult to achieve.

19penn Treebank Part-of-Speech Tag Set.

These syntactic dependencies between words are calculated using Stanford Parser for evaluation only.


https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

Table 4: Correct referent-landmark spatial relationships represented through the different prepositions.

Correct Spatial Relationships (%)
Above Beside Near Behind Inside
100 66,7 57,1 83,3 50

Table 5: Accuracy of CCG categories induction for the grounded and gold-POS tags.
CCG Categories Induction / Matching Edges (%)

Grounded-POS Tags (with grounding model) Gold-POS Tags (without grounding model)
594 68,2

induction so as to investigate the combinatorial syntactic structure of language. These findings open
the door to extend this framework to ground the generated CCG categories through perception in
order to allow a robot to understand complex phrases during interaction.

10 CONCLUSION

This study presents a probabilistic framework for unsupervised induction of combinatory syntactic
structure of language within a human-robot interaction context. The framework calculates numerical
tags representing words in an unsupervised manner, and grounds them through visual perception
so as to understand the syntactic categories and meaning of words. These grounded words and tags
are used for inducing CCG categories, which builds on the current state-of-the-art where a fully
annotated corpus is used for grammar induction [4]. The evaluation score of the generated CCG
parses is promising and could be further improved through ameliorating the inference process of the
HDP-CCG model, which we are considering to implement.
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