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Abstract

Learning object models from natural human-robot interactions is essential for
robots to operate in real environments. Natural human interactions are in essence
multimodal, including among others language and gestures. The main contribution
of this paper is the development and evaluation of an incremental learning algorithm
that uses data from such interactions.

1 Introduction

Models trained offline on large datasets cannot, in general, address some challenges of real data in
home environments. One example is the long-tail distribution, i.e., objects that appear rarely and for
which few or none training samples exist in common databases. Another example is the changing
nature of the environments, with new objects appearing, e.g. food products that did not exist when
the large training datasets were created. Another problem is that in a specific interaction the number
of objects to be recognized is smaller but mistakes are not accepted.

In order to address these challenges, robotic learning should be incremental, they should be able to
learn new objects and their variations over the time. Moreover, a key aspect in service robotics is a
comfortable and intuitive human-robot interaction. Such interaction is needed to capture data to update
the world models incrementally, from the user’s knowledge and behavior, and in a natural manner.
We believe the best interaction is natural language and gestures, similarly to how the user would teach
something to another person.

This paper addresses incremental learning of object models from natural human-robot interaction.
The human should be able to teach unknown objects to the robot, so that the robot can identify them
later on. Our approach (Figure 1) is based on [2] and brings specific contributions at the 3 main steps:

Figure 1: Overview of our approach. A human user teaches a robot new objects through natural
interactions (e.g., pointing to it). The robot recognizes the type of interaction, finds the corresponding
object region on its camera views and updates the object model incrementally with that data.
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Multimodal Interaction Recognition. An accurate identification of the human-robot interactions is a
key aspect, as the strategy to find object patches, needed for training, depends on it. Differently from
[2], we incorporate user skeleton detection [4] to guide the hand search.

Target Object Detection. For each interaction type we select the image patches that are likely to
contain the target object. We use a combination of the segmentation given by MaskRCNN [9] and the
superpixel segmentation proposed in [2].

Incremental Learning. This is our main contribution. It was not addressed in [2]. The candidate
patches obtained in the previous step are used as training samples. We propose an approach based on
incremental clustering of important views and K-Nearest Neighbour for classification.

2 Related work

Very related to our work, Pascuale et al. [18] uses CNN features and SVM for visual recognition.
The training data consists of egocentric images where a human presents an object in front of the
robot. Camoriano et al. [3] uses such data and presents a variation of Regularized Least Squares for
incremental object recognition. In mobile robotics, we find multiple examples that propose how to
incrementally adapt environment visual models as the robot moves. These approaches are often based
on Gaussian mixture models that can be easily updated and maintained to recognize regions of interest
for the robot [6, 19]. Yao et al. [24] proposed an incremental learning method, that continually updates
an object detector and detection threshold, as the user interactively corrects annotations proposed
by the system. Kuznetsova et al. [15] investigated incremental learning for object recognition in videos.
Vatakis et al. [22] shows multimodal recording approach similar to ours, but their dataset’s goal was
to capture user reactions to stimuli with objects or images in a screen.

In recent years, significant advances have been made in the field of incremental learning. Works
like Aksoy et al. [1] are able to incrementally learn semantic event chains (SECs) extracted from
actions using human demonstration. The most classic works presented variations or combinations
with k-means clustering algorithm. Murty et al. [17] combines k-means with multilevel representation
of the clusters. Likas et al. [16] presents a global algorithm that adds a new cluster and dynamically
updates the others by applying the k-means algorithm multiple times. Other approaches apply a
data transformation based on self-organizing maps (SOM) Neural Networks. [7] presents an online
unsupervised system with an incremental update of a Neural Network based on SOM (SOINN).
[23] presents a variant of the Self-Organizing Incremental Neural Networks that incrementally
transform the nodes in the layers of the SOINN using the local distribution. [8] uses SOM to reduce
the dimensionality of the data, but it needs to keep all the data in memory for re-training. [10] presents
a work that combines the SOINN data transformation with SVM for classification.

In robotics, we find situations where the robot interacts directly with the scene, e.g., moving an object,
to build an incremental object model [13, 5, 12, 14, 20]. Our approach is complementary to these
works, as human interaction is needed in real scenarios, e.g., if the object is out of robot’s reach.

3 Incremental Object Model Learning from Interactions

Our approach enables a robot to learn object models incrementally. The proposed approach selects and
stores representative object views (image patches) for each object, selected from the input candidate
patches obtained following the strategy from [2], while limiting the size of the stored data.

3.1 Object model and descriptors.

Our database consists of a set of descriptors for each representative object view. Each of these
descriptors is the centroid of a database cluster, and an object model will be composed of several
of these clusters. We consider descriptors that are reasonably small and fast to compute, since our
system is designed for robotic platforms, where computational time is typically limited. Besides, for an
illustration of typical common object patches in robotic settings, Figure 2 shows a few examples from
MHRI dataset [2]. Those examples show the typical low resolution and high clutter, even in manually
cropped patches. Our goal is to recognize common objects in this type of realistic views, for which
we evaluate several descriptors (detailed in the experiments): common hand-crafted features and deep
learning based features (i.e., final layer outputs from several well known classification CNNs).
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(a) (b) (c)

Figure 2: Examples of MHRI data [2]. (a) Manually Cropped and (b) Automatically segmented patches
from a sample object (apple). (c) Interaction types (from left to right: Point, Show and Speak).

3.2 Incremental Object Learning

The processing of new incoming object views, either for model update or recognition, is as follows:

Model initialization and incremental update. Given a new object view v and its label l, we
compute its descriptor dv and create a new cluster C[v̂] with dv as centroid and l as associated label.

If label l does not exist in the database, l is added to the database initializing a new object.

If label l already exists in the database, existing clusters evolve and update their centroids
(representative descriptors), following incremental clustering ideas. The total number of classes is not
limited but, in order to avoid unlimited growing, the subset for clusters within each class is limited by
a predefined size. If l has reached this maximum number of clusters, we run an alternating strategy that
is repeated every n+1 updates to a certain label l: 1) For the first n updates to label l, our algorithm
computes the distances among all clusters associated with label l (Cl), in order to find the closest and
the furthest pairs among them. To compare two clusters we use the distance between their centroids.
The closest pair of clusters are merged, updating the centroid and increasing its positive count with
one. Oppositely, the furthest pair of clusters, receive a negative vote. 2) For the n+1 update to label
l, the cluster with the worst score (i.e., more negative votes) is replaced by the new singleton cluster.

Additionally, we tested random and minimum distance as another criterion for this cluster reorgani-
zation step. But the proposed method gives a better performance (accuracy of 13% against 11% and
10% respectively), and prevents too much similarity or disparity among clusters from the same label.

Recognition. To classify a new object view v into the existing classes, we simply follow a k-Nearest
Neighbor (k-NN) approach (in our tests, k = 3). The distance between current view descriptor dv
and each existing model cluster is computed, and the view is assigned the label according to the most
frequent label from the closest k neighbours found.

4 Experimental Validation

All our experiments use the Multi-modal Human-Robot Interaction (MHRI) dataset [2]. This dataset
captures the most common natural interactions for teaching object classes to a robot: Point, Show and
Speak. It contains clips from 10 users doing 3 types of interaction with 10 objects from a pool of 22 ob-
jects. Our focus is on exploring incremental learning strategies for the object model part of the pipeline
proposed together with the dataset. However, during our implementation (built on the code provided by
authors in [2]) we have also improved their interaction recognition and their target object detection mod-
ules, as described in the introduction. This improved implementation will be released to the community.

Incremental Learning Module Evaluation: This experiment evaluates the proposed incremental
learning strategy decoupled from the quality of the data, i.e., we use manually segmented patches
from MHRI dataset (670 patches from 22 classes, approx. 30 patches per class and 67 patches per
user). Figure 2(a) shows examples of such patches. We do 10-fold cross validation, each fold keeping
one user for testing and the rest of users for training. The supplementary material includes detailed
results with additional baselines and variations. Table 1(a) only shows the most insightful results.

Model size limit. We considered different cluster size limits (including no-limit). After a cluster-size
limit of 20, we observed that the accuracy did not improve substantially, and hence it is reasonable
to implement such limit in constrained platforms.

Different patch descriptors. We show the best result for hand-crafted features (color histograms
HCRGB) and for deep learning based features (DenseNet4, output of the Dense Block 4 of
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Table 1: Average accuracy for object recognition using different approaches with MHRI data.
Patches: (a) Manually Cropped (clean) (b) Automatically Segmented (noisy)

Incremental k-NN+HCRGB (Ours) 28.0∗ / 31.4∗∗ 9.0∗ / 13.2∗∗

Incremental k-NN+DenseNet4 (Ours) 18.28∗ / 21.17∗∗ 5.5∗ / 5.6∗∗

Offline k-NN+HCRGB 30.2 13.4
Offline SVM+HCRGB [2] 34.8 7.95
Offline CNN (Inception-finetuned) 59.3 17.5

* 50% of data processed by the incremental system. ** 100% of data processed by the incremental system

pre-trained DenseNet [11]). HCRGB provided the highest accuracy, surprisingly at first sight, but
it can be explained by looking at the MHRI data: objects with distinctive colors and poor texture. All
evaluated descriptors, except HCRGB , fire around high-gradient regions. And the CNNs considered,
are pre-trained with very different type of images (ImageNet) with wider FOV images, hence most
learned features probably do not apply in our patches. This just confirms the issues with domain
change using CNN-based strategies with this dataset already discussed in detail in [2].

Related offline baselines. The best performing offline baseline is an Inception V3 model [21],
pre-trained on ImageNet and fine-tuned with the training set of the Manually-cropped patches. This
is an upper bound for the performance worth showing as reference. However, it is not suitable for
incremental learning, since the update data we get from a few user interactions is not enough to
fine-tune further the net. The most significant observation is that our proposed Incremental k-NN
strategy gets similar performance to an offline k-NN that uses all the data at once. This validates the
incremental approach and verifies the strategy to limit the cluster size is not harming the performance.

Validation of the full pipeline: This experiment uses object patches extracted automatically
from interactions for training and testing. Figure 2(b) shows examples of these automatic patches,
with significantly worse quality that manual patches. This increases the challenge but brings the
experiment closer to a system running in the wild. The supplementary material includes more results
with additional baselines and variations. Table 1(b) shows the most insightful results, discussed next.

Incremental k-NN. The incremental system we propose is evaluated with a 10-fold cross-validation,
where each fold corresponds to a user, and set to the best performing configuration from previous
experiment (HCRGB descriptor and model size limit 20). Besides the challenge from using
automatically segmented patches, note that each user manipulates a different subset of the object pool,
i.e., at some points for some of the folds (depending on which user data has been fed to the incremental
system), there were no training examples for some of the test data objects. Since users do not have clips
with all the objects in the pool, Incremental k-NN needs to process several users (4 in our experiments)
to reach a reasonable performance. The average accuracy of our incremental k-NN approach is again
similar to an offline k-NN, but storing a significantly lower amount of data.

Comparison with offline baselines. Up to our knowledge there is not another available end-to-end
system of similar characteristics to ours. Therefore, we show as reference the results of the same
offline approaches as in previous experiment. We can see all approaches suffer a significant decrease
in performance with respect to what they reached training with Manual patches in previous experiment.
This is not surprising and confirms the challenging set up we are working with. Our incremental
approach also suffers a decrease in performance but it is able to outperform the baseline of [2] using
only 50% of the data. Note that in this case the other offline baselines are not much better than our
incremental approach, which highlights the challenging data and setup considered and leaves open
research problems in learning for service robotics.

5 Conclusions

This paper presents the first complete approach for incremental object learning using multimodal
data from natural Human-Robot interaction. The pipeline is based on [2], improving all its stages,
proposing an incremental learning approach and presenting results on a public database. Our novelty
is on the integration of several modules that facilitate the use of natural language and gestures for
incremental robot learning. Our main insights are 1) the domain change is critical in this scenario,
and 2) although we reach a reasonable performance there are still considerable challenges, justifying
the relevance of the topic for future research. We believe that the most relevant one is the exploration
of more sophisticated incremental learning methods, particularly those that are robust to noisy data.
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