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Abstract

Among its potential but fundamental advantages, a capsule network attempts to
better model part-whole relations in images by aggregating agreed votes from
lower-level sub-entities. It is still, however, challenging to enforce capsules to
represent meaningful parts and therefore the network to capture the intended part-
whole composition. In this work we investigate enriched capsule nets on image
classification, guided by external textual knowledge that specifies and constrains
the desired parts and whole. Our preliminary results show a better performance of
the proposed model over the original capsule networks on the ShapeNet screenshot
dataset, which renders 3D objects with salient part-whole hierarchies.

1 Introduction

Capsule networks [6, 7, 19] have recently been proposed to address limitations of convolutional
neural networks. The networks explicitly group neurons into separate capsules where higher layer
capsules are instantiated from votes of lower-level capsules. Research [7, 19] shows that capsule
nets can extract robust and salient features to overcome some shortcomings of convolutional neural
networks. For example, while convolutional neural networks [5, 10, 20] have achieved great successes
on a wide range of tasks, they are still challenged by some basic limitations such as effectiveness of
modelling spatial hierarchies and part-whole relations and composition.

Among its potential but fundamental advantages, a capsule network attempts to model part-whole
relations in images by aggregating agreed votes from lower-level sub-entities. While capsule nets are
developed upon such an intention, it is however still challenging to enforce to learn intended parts
and therefore so-formed part-whole composition.

In this work we explore enriched capsule nets on image classification, guided by external textual
knowledge that provides information (e.g., common sense) on parts and whole. We aim to enrich
capsule nets so that capsules are encouraged to be relevant to entities and sub-components, e.g.,
those specified in meronyms, and hence part-whole composition can be better captured. Even though
neural networks may automatically extract hierarchical features from training data, guiding the
network with knowledge embedded in text can take advantage of complementary visual and text
information. Our preliminary results show that the proposed model achieves better performances
over the original capsule networks on the ShapeNet screenshot dataset, which renders 3D objects
with salient part-whole hierarchies.
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2 Related Work

Convolutional neural networks (CNN) and variants [5, 10, 11, 20] have achieved considerable success
in a wide range of problems and tasks. Capsule networks [19] have been proposed recently to
address some basic limitations of CNN, e.g. those in modelling spatial hierarchies and part-whole
composition. More recently the work of [7] further introduces dynamic routing with the EM algorithm
and shows that networks with matrix capsules can achieve a significant improvement on the NORB
dataset [12]. It is shown in [1, 22] that capsules can achieve good performance on more complex
dataset.

Capsule networks have also been adapted to solve natural language processing problems and achieved
promising results on tasks such as text classification [24] and natural language inference [23].
Independent of capsule nets, there have also been extensive research efforts studying visual and
language representation learning, including but not limited to, visual question answering [2, 14],
visual grounding [4, 8], visual relation extraction [13], and image classification [18].

In this work, we focus on the fundamental potentials of capsule nets in modelling part-whole relations.
Specifically we explore and leverage external composition knowledge to enrich capsule nets and
encourage different capsules to be relevant to part-whole composition specified in textual sources and
show that the model achieves better performance on the ShapeNet screenshot dataset.

3 Our Approach

The high-level view of our approach is depicted in Figure 1. Below we discuss the details of the
model from lower-level feature extractor (left) to high-level capsules and routing layers (right).

Incorporating Image and Text in Capsules Our model uses shallowly stacked convolutional
layers with rectified linear activation as the lower-level feature extractor. We then group learned
features into capsules as in [19].

In order to guide lower-layer capsules to learn features related to parts, we add external textual
knowledge. Specifically, We use the part-whole concepts encoded in common sense database, the
WordNet [16]. For example, a ‘chair’ consists of ‘leg’, ‘arm’, and ‘back’. When building the network,
relations as such are incorporated into the models.

We introduce the aggregation layer to integrate image and textual information. We aim to aggregate
all features related to certain parts into a single capsule vector representation in the higher layer. It is
not straightforward to impose this type of guided routing into the original dynamic routing process,
as dynamic routing treats capsules at the higher layer interchangeably, but in our model we expect the
capsules to carry different hidden parts.

Scaled dot-product attention, the building block of recently proposed transformer models [21] and
many other models, on the other hand, is not symmetric in this sense. We use scaled dot-product
attention layer here, with word embeddingE = {e1, e2, ..., en} as the ‘Query’ [21] in the dot product,
as indicated in Equation (1):

C = softmax(
QKT

√
dk

)V (1)

where matrix Q is a linear transformation of all word embedding ei, K, V are both linear transforma-
tion of the input capsules, dk is the dimension of K, and C is the output capsules of the attention
layer. All the lower-level capsule inputs share the same transformation, thus reducing the number of
parameters significantly.

Dynamic Routing with Prior After we aggregate similar features into capsules corresponding to
certain symbolic parts, we perform voting and dynamic routing. Unlike in [19], we do not initialize
the routing coefficients with constant values. Instead the initial routing coefficients between a lower
level capsule and a higher one is multiplied by a factor γ before being normalized with softmax, to
enhance the part-whole word symbols introduced with external resources. γ is treated as a hyper-
parameter. By setting γ to be infinity we assume strict part-whole information flow. The norm of the
final layer capsule represents the classification probability and we use the marginal loss proposed by
[19].
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Figure 1: A capsule network with external part-whole knowledge and the dot-product attention.

External Knowledge In order to guide lower-layer capsules to learn features related to specific
part concepts as described above, we fetch all related nouns from the gloss of WordNet [16] and
meronyms for the categories appear in ShapeNet. We also manually add words expressing parts.

The word embedding learned from text is in a space different from what is potentially learned from
images. Pre-trained word embedding [15, 17] places words in a continuous space where salient
semantic relatedness information of words is maintained. In images we often do not explicitly get
pre-trained features related to certain entities. To address this, the model will use two types of
information in image data:

• The co-occurrence of image label and related features and sub-entities. The words corre-
sponding to sub-entities of the main concept in an image will be correlated to the image
label automatically throught their part-whole relations.

• The existence of similar image features and sub-entities across different classes. If the same
sub-entities and similar features appear in two different classes of images, it is possible
to establish a connection between them. This can help computers to give identities to
sub-entities and find the correspondence to the words naming them.

We use GloVe [17] embedding vectors to guide the voting and routing process. Note that we build
the pool of word vectors into the model rather than feeding them as input during training.

4 Experiments

We performed image classification using the ShapeNet screenshot data [3]. We choose this dataset
since it contains clean, artificial images that are rendered from 3D CAD models with the objects and
their part-whole information more salient compared with real-life images.

We chose 20 object categories from ShapeNetCore Models [3]. We eliminated categories that have
less than 300 examples and did not select categories that contain non part-whole objects (e.g., flowers
on flower pots). Most categories have clear part-whole relations and some categories have overlapping
parts/subcomponents. We selected the first 300 distinct 3D models for each category and rotate them
with 8 evenly spaced angles before taking screen-shot, resulting in a dataset containing 48,000 labeled
images. The image size is 128*128 with 3 color channels. One third of the dataset is used as the test
set and the rest as our training set. We keep all hyper-parameters same as in [19].

We compared our results to that of the original capsule layers [19]. Below we list several capsule
network models and show the classification accuracy in the table. All the networks are built upon one
convolutional layer with kernel stride equals 1 and two convolutional layers with kernel stride 2. The
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Table 1: Accuracy of models on the test set.
Model Accuarcy

CapsuleNet 75.52%
CapsuleNet_2layer 76.93%
CapsuleNet_wordconcat 76.22%
CapsuleNet_attention 78.12%

kernel size is 5*5. We use Adam stochastic gradient descent [9] as the optimizer. All models use the
same hyper parameters and we train 100 epoch before reporting the best test accuracies.

• CapsuleNet: the original capsule network with dynamic routing.
• CapsuleNet_2layer: CapsuleNet with one more capsule layer with dynamic routing.
• CapsuleNet_wordconcat: CapsuleNet with 2 capsule layer, and the transformed word

embedding vector is concatenated to middle layers before generate voting.
• CapsuleNet_attention: Our CapsuleNet with scaled dot attention and word embedding is

used as attention query.

Table 1 shows that the proposed model achieves better accuracy on the test set. Adding more
capsule layers with dynamic routing can improve classification accuracy while the naive approach of
concatenating transformed word embedding to lower layer capsules does not help. We due this to
the fact that the network cannot automatically bridge between concepts learned from text and that
potentially learned from the image feature space. Our proposed model uses scaled dot product and
achieved better performance without adding too many parameters.

5 Conclusion and Discussion

Our preliminary exploration shows that incorporating into capsule networks the external part-whole
knowledge is promissing, improving the performance on the ShapeNet screenshot image classification.
The attention mechanism is capable of absorbing the external knowledge into the network. This
is a preliminary but the first attempt, according to our knowledge, to study visual and language
information in capsule nets with the aim to better leverage the networks’ potentials in modelling
part-whole relationship.
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