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Abstract

To help bridge the gap between internet vision-style problems and the goal of vision
for embodied perception we instantiate a large-scale navigation task – Embodied
Question Answering [2] in photo-realistic environments (Matterport 3D). We
thoroughly study navigation policies that utilize 3D point clouds, RGB images, or
their combination. Our analysis of these models reveals several key findings. We
find that two seemingly naive navigation baselines, forward-only and random, are
strong navigators and challenging to outperform, due to the specific choice of the
evaluation setting presented by [2]. We find a novel loss-weighting scheme we call
Inflection Weighting to be important when training recurrent models for navigation
with behavior cloning and are able to out perform the baselines with this technique.
We find that point clouds provide a richer signal than RGB images for learning
obstacle avoidance, motivating the use (and continued study) of 3D deep learning
models for embodied navigation.

1 Introduction

Imagine asking a home robot ‘Hey - can you go check if my laptop is on my desk? And if so, bring it
to me.’ In order to be successful, such a agent would need a range of artificial intelligence (AI) skills –
visual perception, language understanding and navigation. Much of the recent success in these areas
is due to large neural networks trained on massive human-annotated datasets collected from the web.
However, this static paradigm of ‘internet vision’ is poorly suited for training embodied agents. What
are needed then are richly annotated, photo-realistic environments where agents may learn about the
consequence of their actions on future perceptions while performing high-level goals.

To this end, a number of recent works have proposed goal-driven, perception-based tasks situated in
simulated environments to develop such agents. While these tasks are set in semantically realistic
environments most are based in synthetic environments and these problems are typically approached
with 2D perception (RGB frames) despite the widespread use of depth-sensing cameras (RGB-D) on
actual robotic platforms

Contributions. We address these points of disconnect by instantiating a large-scale, language-based
navigation task in photorealistic environments and by developing end-to-end trainable models with
point cloud perception – from raw 3D point clouds to goal-driven navigation policies.

Specifically, we generalize the recently proposed Embodied Question Answering (EmbodiedQA) [2]
task (originally proposed in synthetic SUNCG scenes [5]) to the photorealistic 3D reconstructions
from Matterport 3D (MP3D) [1].
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Figure 1: Illustration of mesh construction errors and what point clouds are able to correct. Notice
the wrapping of flat surfaces, the extreme differences in color, and texture artifacts from reflections.

We introduce the MP3D-EQA dataset, consisting of 1136 questions and answers grounded in 83
environments. We present a large-scale exhaustive evaluation of design decisions, training a total of
16 navigation models (2 architectures, 2 language variations, and 4 perception variations), 3 visual
question answering models, and 2 perception models – ablating the effects of perception, memory,
and goal-specification. We find that point clouds provide a richer signal than RGB images for learning
obstacle avoidance, motivating continued study of utilizing depth information in embodied navigation
tasks.

We find a novel weighting scheme we call Inflection Weighting – balancing the contributions to the
cross-entropy loss between inflections, where the ground truth action differs from the previous one,
and non-inflections – to be an effective technique when performing behavior cloning with a shortest
path expert.

To the best of our knowledge, this is the first work to explore end-to-end-trainable 3D perception
for goal-driven navigation in photo-realistic environments. With the use of point clouds and realistic
indoor scenes, our work lays the groundwork for tighter connection between embodied vision and
goal-driven navigation, provides a testbed for benchmarking 3D perception models, and hopefully
brings embodied agents trained on simulation one step closer to real robots equipped with 2.5D
RGB-D cameras.

2 Questions in Environments

In this work, we instantiate the Embodied Question Answering (EQA) [2] task in realistic envi-
ronments from the Matterport3D dataset [1]. Our question generation pipeline follows [2]. We
automatically generate templated questions. In total, we generate ∼1136 questions across 83 home
environments (7 environments resulted in no questions after filtering). We use the same train/val/test
split of environments as in MINOS [4]. We restrict agent start locations to lie on the same floor as
question targets and limit episodes to single floors.

Learning Point Cloud Representations

Consider a point cloud P ∈ P which is an unordered set of points in 3D space with associated
colors, i.e. P = {(xm, ym, zm, Rm, Gm, Bm)}Mm=1. To enable a neural agent to perceive the world
using point clouds, we must learn a function f : P → Rd that maps a point cloud to an observation
representation. To do this, we leverage the recently proposed PointNet++ [3] architecture.

PointNet++. At a high-level, PointNet++ alternates between spatial clustering and feature sum-
marization – resulting in a hierarchy of increasingly coarse point clusters with associated feature
representations summarizing their members. This approach draws a direct analogy to convolution
and pooling layers in standard convolutional neural network architectures for RGB images.

Auxiliary Task Pretraining. To train the encoder architecture to extract semantically and spatially
semantic representations of agent views, we introduce three pretraining tasks based on the annotations
provided in Matterport3D.

RGB Image representations. We utilize ResNet50 trained using an analogous set of tasks (semantic
segementaion, autoencoding, and depth from single images) to learn a representation for RGB images.
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Navigation QA

Navigator d0 (For reference) dT (Lower is better) dmin (Lower is better) d∆ (Higher is better) %collision (Lower is better) IoUT (Higher is better) Top− 1 (Higher is better)

T−10 T−30 T−50 T−10 T−30 T−50 T−10 T−30 T−50 T−10 T−30 T−50 T−10 T−30 T−50 T−10 T−30 T−50 T−10 T−30 T−50

R/Fwd 0.354 1.898 3.547 0.933 1.330 2.154 0.011 0.346 1.397 −0.579 0.568 1.393 82.707 69.577 64.970 0.062 0.050 0.030 0.384 0.369 0.372

R+Q/Fwd 0.354 1.898 3.547 0.933 1.330 2.154 0.011 0.346 1.397 −0.579 0.568 1.393 82.707 69.577 64.970 0.062 0.050 0.030 0.384 0.369 0.372

R+RGB 0.354 1.898 3.547 1.194 1.617 2.340 0.040 0.375 1.349 −0.840 0.281 1.207 59.959 51.460 48.425 0.077 0.058 0.031 0.395 0.396 0.372

R+RGB+Q 0.354 1.898 3.547 1.407 1.740 2.521 0.034 0.340 1.332 −1.053 0.157 1.026 54.879 48.151 45.624 0.111 0.070 0.054 0.390 0.385 0.379

R+PC 0.354 1.898 3.547 1.428 1.754 2.352 0.021 0.320 1.164 −1.074 0.144 1.195 53.794 45.467 45.079 0.070 0.067 0.047 0.390 0.379 0.373

R+PC+Q 0.354 1.898 3.547 1.514 1.812 2.394 0.033 0.325 1.160 −1.160 0.085 1.153 50.479 40.307 42.048 0.059 0.052 0.043 0.380 0.376 0.378

R+PC+RGB 0.354 1.898 3.547 1.547 1.791 2.336 0.020 0.322 1.211 −1.193 0.107 1.211 48.747 38.792 39.968 0.084 0.077 0.044 0.385 0.386 0.373

R+PC+RGB+Q 0.354 1.898 3.547 1.539 1.843 2.420 0.032 0.323 1.170 −1.185 0.055 1.127 46.125 38.420 40.244 0.067 0.072 0.055 0.383 0.387 0.387

M 0.354 1.898 3.547 0.366 0.830 1.833 0.090 0.505 1.460 −0.012 1.068 1.714 11.665 15.410 26.463 0.128 0.091 0.081 0.384 0.376 0.378

M+Q 0.354 1.898 3.547 0.508 0.933 1.920 0.052 0.426 1.421 −0.154 0.965 1.627 24.516 25.856 36.614 0.147 0.109 0.068 0.368 0.368 0.369

M+RGB 0.354 1.898 3.547 0.637 1.157 2.177 0.099 0.538 1.479 −0.283 0.741 1.370 18.641 20.569 29.645 0.188 0.136 0.075 0.391 0.380 0.377

M+RGB+Q 0.354 1.898 3.547 0.707 1.171 2.194 0.071 0.423 1.386 −0.353 0.727 1.353 21.028 21.404 29.077 0.189 0.141 0.083 0.386 0.381 0.376

M+PC 0.354 1.898 3.547 0.494 1.020 1.817 0.098 0.484 1.236 −0.140 0.878 1.730 13.763 14.671 22.069 0.163 0.114 0.083 0.384 0.387 0.382

M+PC+Q 0.354 1.898 3.547 0.502 1.030 1.910 0.081 0.497 1.272 −0.148 0.868 1.637 12.135 13.843 19.362 0.184 0.158 0.118 0.374 0.395 0.368

M+PC+RGB 0.354 1.898 3.547 0.461 0.940 1.791 0.103 0.513 1.269 −0.107 0.958 1.756 9.973 14.348 22.249 0.209 0.179 0.111 0.379 0.387 0.374

M+PC+RGB+Q 0.354 1.898 3.547 0.574 1.044 1.898 0.083 0.431 1.203 −0.220 0.854 1.649 14.915 16.401 23.492 0.209 0.148 0.112 0.387 0.387 0.371

Random 0.354 1.898 3.547 0.912 1.275 2.652 0.048 0.797 2.262 −0.558 0.623 0.895 16.954 12.715 12.024 0.097 0.072 0.040 0.376 0.368 0.382

ShortestPath 0.354 1.898 3.547 0.005 0.005 0.005 0.005 0.005 0.005 0.349 1.893 3.542 0.000 0.000 0.000 0.581 0.581 0.581 0.394 0.394 0.394

Table 1: Evaluation of EmbodiedQA agents trained with inflection weighting on navigation and
answering metrics for the MP3D-EQA v1 test set. RGB models perceive the world via RGB images
and use ResNet50. PC models perceive the world via point clouds and use PointNet++. PC+RGB
models use both perception modalities and their respective networks.

Imitation Learning from Expert Trajectories

Navigation models. All navigation models are trained with Behavior Cloning where they are made
to mimic the ground truth , shortest path agent trajectories. For example, at a given time step, the
Reactive models (Reactive and Reactive+Q) are shown the most recent ground truth point cloud
and trained to predict the next ground truth action taken by the agent. Similarly, the sequence-based
navigation models (LSTM, LSTM+Q) are trained to predict the ground-truth action at every time step
by looking at the ground-truth point cloud at the current time step, (possibly) question embedding
and ground-truth action embedding for the previous time step.

Inflection weighting. We add a novel weighting term to our loss called inflection weighting. When
following the shortest path, there are a very few number of times the model needs to predict an action
that differs from the previous action. We therefore find it critical to increase the importance of these
actions and weight them by twice as much. More concretely, we uses a weighted average over the
batch where wt is 1.0 when at = at−1 and 2.0 when they differ. We define the first action as an
inflection.

3 Experiments and Results

We closely follow the experimental protocol proposed by Das et al. [2] for their EmbodiedQA
experiments on House3D. All results here are reported on novel test environments. Agents are
evaluated by spawning 10, 30, or 50 primitive actions away from target (in the question), which
corresponds to distances of approximately 0.35, 1.89, and 3.54 meters from target respectively,
denoted by d0 in Tab. 1.

Our experiments found that attention answering module worked best (compared to question-only
and last-frame) and thus, all results here are reported with attention answering module.

Question Answering. For measuring question answering performance, we report the top-1 accuracy,
i.e. did the agent’s predicted answer match the ground truth or not. We propose a new metric, IoUT

(higher is better), to evaluate the quality of the view of the target the agent obtains at the end of
navigation. We compute the intersection-over-union (IoU) score between the ground-truth target
segmentation and the same centered bounding box used to select views during dataset generation.

Navigation. For navigation, we report the distance to the target object from where the agent is
spawned (d0) for reference, and measure distance to the target object upon navigation completion
dT (lower is better), and the change in distance from to the target object from initial to final position

3



d∆ = dT − d0 (higher is better). All the distances are geodesic, i.e. measured along the shortest
path.

Table 1 shows all preliminary navigational and question-answering metrics for all approaches. Based
on current state of experiments we noticed next observations:

Forward-only is a strong baseline. One of the side-effects of the evaluation procedure proposed
in [2] is that the agent is commonly facing the correct direction when it is handed control. As a
result, a forward-only navigator does quite well. Our vision-less reactive models with and without
the question (R/Fwd and R+Q/Fwd respectively) learn to only predict forward.

Inflection weighted training is effective. We find inflection weighting to be crucial for training
navigation models with behavior cloning of a shortest-path expert. Without it, few of our learned
models beat forward-only and random baselines.

Memory helps. Models with memory are better navigators than their reactive counter parts. Surpris-
ingly, a vision-less navigator with memory performs well at distance based navigation metrics.

Vision helps gaze direction metrics. The addition of vision leads to improvements on IoUT and
QA, however, the improvements in IoUT do not translate directly improvement on QA. Models
with vision also tend to collide with the environment less often.

Vision hurts distance metrics. Surprisingly, adding vision hurts distance based navigation metrics
(dT). For reactive models, adding vision causes the models to collide significantly less frequently,
resulting in a loss of the ‘functional stop’ that forward-only uses. For memory models, the story isn’t
as clear; however, memory models with vision stop less often.

Question somewhat helps. Interestingly, we do not see much of an improvement when providing
models with the question. We suspect that because of limitations of behavior cloning.

PC+RGB provides the best of both worlds. The general tend is that point clouds provided a richer
signal for obstacle avoidance (corresponding to lower %collision values), while RGB provides richer
semantic information (corresponding to a higher IoUT and QA). Combining both point clouds and
RGB provides improvements to both obstacle avoidance and leveraging semantic information.

4 Conclusion

We present an extension of the task of EmbodiedQA to photorealistic environments utilizing the
Matterport 3D dataset and propose the MP3D-EQA v1 dataset. We then present a thorough study of
2 navigation baselines and 2 different navigation architectures with 8 different input variations. We
provide analysis and insight into the factors that affect navigation performance and propose a novel
weighting scheme – Inflection Weighting – that increases the effectiveness of behavior cloning. We
demonstrate that two the navigation baselines, random and forward-only, are quite strong under the
evaluation settings presented by [2]. Our work serves as a step towards bridging the gap between
internet vision-style problems and the goal of vision for embodied perception.
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