
Systematic Generalization: What Is Required and
Can It Be Learned?

Anonymous Author(s)
Affiliation
Address
email

Abstract

Numerous models for grounded language understanding have been recently pro-1

posed, including (i) generic models that can be easily adapted to any given task2

and (ii) intuitively appealing Neural Module Networks (Andreas et al., 2016a) that3

require background knowledge to be instantiated. We compare generic and modular4

models in how much they lend themselves to a particular form of systematic gener-5

alization. Our findings show that the generalization of modular models is much6

more systematic and that it is highly sensitive to the module layout, i.e. to how7

exactly the modules are connected. We furthermore investigate if modular models8

that generalize well could be made more end-to-end by learning their layout and9

parametrization. We show how end-to-end methods from prior work often learn10

spurious layouts and parametrizations that do not facilitate systematic generaliza-11

tion. Our results suggest that, in addition to modularity, systematic generalization12

in language understanding may require explicit regularizers or priors.13

1 Introduction14

In recent years, neural network based models have become the workhorse of natural language under-15

standing and generation showing state-of-the-art performance on numerous benchmarks, including16

Recognizing Textual Entailment (RTE) (Gong et al., 2017), Visual Question Answering (VQA)17

(Jiang et al., 2018), and Reading Comprehension (Wang et al., 2018). Despite these successes, a18

growing body of literature suggests that these approaches latch onto statistical regularities which are19

omnipresent in existing datasets (Agrawal et al., 2016; Gururangan et al., 2018; Jia & Liang, 2017)20

and do not generalize outside of the specific distributions they are trained on. These findings have21

recently been corroborated by Lake & Baroni (2018), who showed that seq2seq models (Sutskever22

et al., 2014; Bahdanau et al., 2015) show little systematicity (Fodor & Pylyshyn, 1988) in how they23

generalize, i.e. they fail to learn general rules on how to compose words.24

Introduced by Andreas et al. (2016b), Neural Module Networks (NMNs) approach aims to improve25

the generalization capabilities of neural models by adding modularity and structure to their design26

to make them resemble the kind of rules they are supposed to learn. The NMN approach, while27

intuitively appealing, has seen limited adoption because of the large amount of domain knowledge it28

requires to decide (Andreas et al., 2016a) or predict (Johnson et al., 2017; Hu et al., 2017) how the29

modules should be created (parametrization) and how they should be connected (layout) based on a30

query. Besides, their performance has often been matched by more generic neural models, such as31

FiLM (Perez et al., 2017), Relations Networks (Santoro et al., 2017), and CAN (Hudson & Manning,32

2018), and their generalization, to the best of our knowledge, has not been a subject of a focused33

study. In this work we investigate the impact of explicit modularity and structure on systematic34

generalization by studying the generalization of NMNs and contrasting it to those of generic models.35

We choose to focus on the following basic generalization requirement: a good model should be able36

Submitted to 32nd Conference on Neural Information Processing Systems (NIPS 2018). Do not distribute.



a: Is there an S above
T? True

b: Is there a W left of
an A? False

Figure 1: SQOOP tests model’s ability to rea-
son about all object pairs after being trained on
a small subset of them. We show a positive (left)
and negative (right) example from SQOOP.

R

X Y

a: NMN-tree

R

x

yY

X

b: NMN-chain

Figure 2: The different NMN layouts for the
question “is there a S above T”.

to reason about all possible object combinations despite being trained on a small subset of them. We37

instantiate this requirement in form of a simple yes-no Visual Question Answering (VQA) dataset.38

Our first finding is that NMNs do generalize better than other neural models when an appropriate39

choice of layout and parametrization is made. We furthermore experiment with existing methods for40

making NMNs more end-to-end by inducing the module layout (Johnson et al., 2017) or learning41

module parametrization through soft-attention over the question (Hu et al., 2017) . We show how42

such end-to-end approaches often fail to find the right structural settings and instead prefer a wrong43

chain layout or spurious parametrization and do not generalize better than the generic models. We44

believe that our findings challenge the intuition of researchers in the field and provide a foundation45

for improving systematic generalization of neural approaches to language understanding.46

2 Setup47

Dataset: SQOOP (Spatial Queries Over Object Pairs, Figure 1) is a minimalistic VQA task designed48

to test a particular type of generalization: the ability to disentangle the meaning of relation words49

and object words and then compose these meanings in novel contexts to perform basic relational50

reasoning in a consistent way. Concretely, SQOOP requires answering a yes-no question q = XRY51

about whether objects X and Y are in a spatial relation R, given a 64 × 64 RGB image x. x contains52

5 randomly chosen and randomly positioned objects. There are 36 objects: letters A-Z and digits 0-9,53

and 4 relations: LEFT_OF, RIGHT_OF, ABOVE, and BELOW. Our goal is to discover which models54

can correctly answer questions about all 36 · 36 possible object pairs in the SQOOP dataset after55

having been trained on only a subset. Therefore, we train on 36 · 4 · k unique questions, where for56

every left-hand-side (LHS) object X, we randomly sample k different right-hand-side objects (RHS),57

and test on the remaining 36 · 4 · (36− k) questions. We refer to k as the #rhs/lhs parameter of the58

dataset. To exclude a possible compounding factor of overfitting on training images, all our training59

sets contain 1 million examples obtained by sampling multiple images per question.60

Models: We experiment with models from 2 broad categories. Generic models such as FiLM (Perez61

et al., 2017), Relation Networks (RelNet, Santoro et al. (2017)) and CAN Hudson & Manning62

(2018), and modular and structured Neural Module Networks (NMN). NMNs (Andreas et al., 2016b)63

construct question-specific networks by composing together trainable neural modules. To answer64

a question with an NMN, a computation graph is constructed by making 2 decisions: layout -65

the number of modules, their types and how they are connected, and parametrization - how these66

modules are parametrized based on the question. For our study we adapt the N2NMN (Hu et al., 2017)67

paradigm from this family, which predicts the layout with a seq2seq model (Sutskever et al., 2014)68

and computes the parametrization of the modules using a soft attention mechanism. Since all the69

questions in SQOOP have the same structure, we can get away with a single trainable layout variable70

and separate trainable attention variables per each module. We also experiment with hard-coded71

layout and parametrization setting, in the spirit of original NMN (Andreas & Klein, 2015).72

Formally, our NMN is constructed by repeatedly applying a generic neural module f(θ, γ, hl, hr),73

which takes as inputs the shared parameters θ, the question-specific parametrization γ and the left-74

2



Table 1: Comparing the performance of generic models to the structured NMN-Tree model on the
hardest version of our dataset (lower #rhs/lhs is more difficult).

model train. acc (%) test acc. (%)
Conv+LSTM 97.9 64.4± 1.8

RelNet 95.6 63.1± 1.0
FiLM 100 66.6± 2.5
MAC 99.5 72.6± 3.4

NMN-Tree (Residual) 100 100.0± 0.0
NMN-Tree (Find) 100.0 99.7± 0.3

NMN-Chain (Find) 99.2 51.4± 2.8
NMN-Chain-XYR (Residual) 100 51.6± 1.6
NMN-Chain-XRY (Residual) 99.7 54.1± 1.7
NMN-Chain-RXY (Residual) 98.7 50.5± 0.9

hand side and right-hand side inputs hl and hr. M such modules are connected and conditioned on a75

question q = (q1, q2, q3) as follows:76

γk =

s∑
i=1

αk,ie(qi) (1)

hk = f(θ, γk,

k−1∑
j=−1

τk,j0 hj ,

k−1∑
j=−1

τk,j1 hj) (2)

In the equations above, h−1 = 0 is the zero tensor, h0 = hx are the image features outputted by a77

CNN network referred to as the stem, and e is the embedding table for the questions words. We refer78

to A = (αk,i) and T = (τk,i0 , τk,i1 ) as the parametrization attention matrix and the layout tensor79

respectively. The output of the final module, hM is fed into a fully connected classifier network to80

make predictions. We perform our experiments with the Find module from Hu et al. (2017) and the81

Residual module from Johnson et al. (2017) with minor modifications (Appendix-A.3 for details).82

Based on the generic NMN model described above, we experiment with several specific architectures.83

Each of the models uses M = 3 modules, which are connected and parametrized differently. In84

NMN-Chain the modules form a sequential chain as shown in Figure 1b. Modules 1, 2 and 3 are85

parametrized based on the first object word, second object word and the relation word respectively,86

which is achieved by setting the attention α1, α2, α3 to the corresponding one-hot vectors. NMN-87

Tree has similar hard-coded attention vectors, with a tree-like connectivity between the modules.88

1a. In the Stochastic N2NMN, similar to the N2NMN (Hu et al., 2017), the layout T is treated as a89

stochastic latent variable that takes two values: Ttree as in NMN-Tree, and Tchain as in NMN-Chain.90

The output probabilities are computed by marginalizing out T , i.e. probability of label “yes” is91

computed as p(yes|x, q) =
∑

T∈{Ttree,Tchain} p(yes|T, x, q)p(T ). Attention N2NMN also from92

(Hu et al., 2017), is structured just like NMN-Tree but has αk computed as softmax(α̃k), where α̃k93

is a trainable vector. We use Attention N2NMN only with the Find module, which was designed by94

(Hu et al., 2017) specifically parametrized with the help of soft attention.95

3 Experiments96

Which Models Generalize Better: We report the performance for all models on the hardest version97

of our dataset (#rhs/lhs = 1) in Table 1. These results show that generic models do not generalize98

well, while the NMN-Tree model does. To understand better the cause of NMN-Tree’s advantage99

we compare the performance of the NMN-Tree and NMN-Chain models. The results show that for100

both Find and Residual architectures, using a tree layout is crucial for generalization as NMN-Chain101

performs barely above random chance.102

Can the Right Kind of NMN Be Induced: The generalization of NMN-Tree model, while impres-103

sive, is somewhat unsurprising because both the layout and parametrization of this model encode a104

significant amount of prior knowledge about the task. We therefore investigate whether the amount105

of such prior knowledge can be reduced by fixing one of the structural aspects and inducing the other.106

For inducing a layout, we use the Stochastic N2NMN model. We experiment with both Find and107

3



Table 2: Layout induction results for Stochastic N2NMNs using Residual modules and Find
modules. For each setting of p0(tree), we report results on 1 rhs/lhs and 18 rhs/lhs datasets.

(a) Residual modules

#rhs/lhs p0(tree) test acc. (%) p50K(tree)

1
0.1 52.7± 2.2 0.003
0.5 57.0± 4.4 0.026
0.9 99.9± 0.1 0.997

18
0.1 100.0± 0.0 0.999
0.5 97.7± 5.1 0.999
0.9 99.1± 2.3 0.999

(b) Find modules

#rhs/lhs p0(tree) test acc. (%) p50K(tree)

1
0.1 51.2± 2.9 0.00
0.5 93.2± 7.1 0.999
0.9 95.9± 1.6 0.999

18
0.1 78.6± 20.7 0.2
0.5 91.6± 6.5 0.999
0.9 97.3± 3.4 0.999

Residual modules and report results with diverse initial conditions, p0(tree) = 0.1, 0.5, 0.9, where108

p0(tree) is the initial value of p(Ttree). The results obtained on the #rhs/lhs=1 dataset (Table 2) show109

that the correct layout was not induced for p0(tree) = 0.1 and p0(tree) = 0.5 with the Residual110

module and for p0(tree) = 0.1 with the Find module. We also run similar experiments on an easy-to-111

generalize #rhs/lhs=18 version. Here, the NMN with Residual module preferred the tree layout for112

all initializations. It is notable, however, that in the setting with #rhs/lhs=1 where the correct choice113

of the layout is the only way to generalize, only a very lucky initialization p0(tree) = 0.9 resulted in114

successful layout induction for the Residual module.115

For parameterization induction, we experiment with the Attention N2NMN model on #rhs/lhs=1116

and #rhs/lhs=18. The model often did not find the attention settings that lead to generalization on117

the challenging #rhs/lhs=1 split (83.8% test accuracy). That should be contrasted with the close-to-118

perfect 99.2% accuracy of the model that was trained on #rhs/lhs=18 version of the task, suggesting119

that the parametrization induction did not work due to the difficulty of our #rhs/lhs=1 split. To analyze120

the learnt attention weights, we compute a sharpness ratio ρ = max(αk,X , αk,Y )/min(αk,X , αk,Y )121

for modules k = 1 and k = 2 for each of the trained modules. We find that the learnt attention weights122

on #rhs/lhs=1 are generally blurry with ρ < 2 for 40% of the modules (details in Appendix-A.4).123

4 Related Work124

Using synthetic VQA datasets to study grounded language understanding is a recent trend started by125

CLEVR (Johnson et al., 2016), and recently the ShapeWorld dataset (Kuhnle & Copestake, 2017),126

that involves a number of VQA generalization tests. Closely related to our work is the recent study127

on generalization to long-tail questions about rare objects by Bingham et al. (2018). They do not,128

however, consider as many models as we do and do not study whether the best-performing models129

can be made end-to-end. Andreas et al. (2016a) introduced NMNs as a modular, structured VQA130

model where a fixed number of hand-crafted neural modules are chosen and composed together in a131

layout determined by the dependency parse of the question. Hu et al. (2017) and Johnson et al. (2017)132

followed up with end-to-end NMNs, removing the non-differentiable parser. Recent concurrent work133

by (Hu et al., 2018) attempts to remove the need for hard stochastic layout decisions.134

5 Conclusion and Discussion135

We have conducted a rigorous investigation of an important form of systematic generalization required136

for grounded language understanding: the ability to reason about all possible pairs of objects despite137

being trained on a small subset. The intuitive appeal of modularity and structure in designing138

neural architectures for language is now supported by our results. Our other key finding is that139

coming up with an end-to-end and/or soft version of modular models may be not sufficient for140

strong generalization, because in the very setting where strong generalization is required, end-to-end141

methods may find a different, less compositional solution (e.g. a chain layout or blurred attention).142

This conclusion is relevant in the view of recent work done in the direction of making Neural Module143

Networks more end-to-end (Suarez et al., 2018; Hu et al., 2018; Hudson & Manning, 2018). We hope144

that our findings will inform researchers working on language understanding and provide them with145

a useful intuition about what facilitates strong generalization and what is likely to inhibit it.146

4



References147

Aishwarya Agrawal, Dhruv Batra, and Devi Parikh. Analyzing the Behavior of Visual Question148

Answering Models. arXiv:1606.07356 [cs], June 2016. URL http://arxiv.org/abs/149

1606.07356. arXiv: 1606.07356.150

Jacob Andreas and Dan Klein. Alignment-Based Compositional Semantics for Instruction Following.151

In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing,152

2015. URL https://arxiv.org/abs/1508.06491.153

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. 2016154

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 39–48, 2016a.155

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural Module Networks. In156

Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),157

2016b. URL http://arxiv.org/abs/1511.02799.158

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation by Jointly159

Learning to Align and Translate. In Proceedings of the ICLR 2015, 2015.160

Eli Bingham, Piero Molino, Paul Szerlip, Obermeyer Fritz, and Goodman Noah. Chacterizing how161

Visual Question Answering scales with the world. In NIPS Workshop on Visually-Grounded162

Interaction and Language, 2018.163

Jerry A. Fodor and Zenon W. Pylyshyn. Connectionism and cognitive architecture: A critical analysis.164

Cognition, 28(1):3–71, 1988.165

Yichen Gong, Heng Luo, and Jian Zhang. Natural Language Inference over Interaction Space.166

arXiv:1709.04348 [cs], September 2017. URL http://arxiv.org/abs/1709.04348.167

arXiv: 1709.04348.168

Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel R. Bowman, and169

Noah A. Smith. Annotation Artifacts in Natural Language Inference Data. arXiv:1803.02324 [cs],170

March 2018. URL http://arxiv.org/abs/1803.02324. arXiv: 1803.02324.171

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image172

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,173

pp. 770–778, 2016.174

Ronghang Hu, Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Kate Saenko. Learning to175

Reason: End-to-End Module Networks for Visual Question Answering. arXiv:1704.05526 [cs],176

April 2017. URL http://arxiv.org/abs/1704.05526. arXiv: 1704.05526.177

Ronghang Hu, Jacob Andreas, Trevor Darrell, and Kate Saenko. Explainable neural computation via178

stack neural module networks. In Proceedings of the European Conference on Computer Vision179

(ECCV), pp. 53–69, 2018.180

Drew A. Hudson and Christopher D. Manning. Compositional Attention Networks for Machine181

Reasoning. In ICLR 2018, February 2018.182

Robin Jia and Percy Liang. Adversarial Examples for Evaluating Reading Comprehension Systems.183

Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing,184

pp. 2021–2031, 2017. doi: 10.18653/v1/D17-1215. URL https://aclanthology.coli.185

uni-saarland.de/papers/D17-1215/d17-1215.186

Yu Jiang, Vivek Natarajan, Xinlei Chen, Marcus Rohrbach, Dhruv Batra, and Devi Parikh.187

Pythia v0.1: The winning entry to the vqa challenge 2018. https://github.com/188

facebookresearch/pythia, 2018.189

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C. Lawrence Zitnick, and190

Ross Girshick. CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual191

Reasoning. arXiv:1612.06890 [cs], December 2016. URL http://arxiv.org/abs/1612.192

06890. arXiv: 1612.06890.193

5

http://arxiv.org/abs/1606.07356
http://arxiv.org/abs/1606.07356
http://arxiv.org/abs/1606.07356
https://arxiv.org/abs/1508.06491
http://arxiv.org/abs/1511.02799
http://arxiv.org/abs/1709.04348
http://arxiv.org/abs/1803.02324
http://arxiv.org/abs/1704.05526
https://aclanthology.coli.uni-saarland.de/papers/D17-1215/d17-1215
https://aclanthology.coli.uni-saarland.de/papers/D17-1215/d17-1215
https://aclanthology.coli.uni-saarland.de/papers/D17-1215/d17-1215
https://github.com/facebookresearch/pythia
https://github.com/facebookresearch/pythia
https://github.com/facebookresearch/pythia
http://arxiv.org/abs/1612.06890
http://arxiv.org/abs/1612.06890
http://arxiv.org/abs/1612.06890


Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Judy Hoffman, Li Fei-Fei, C. Lawrence194

Zitnick, and Ross Girshick. Inferring and Executing Programs for Visual Reasoning. In ICCV,195

2017. URL http://arxiv.org/abs/1705.03633.196

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv:1412.6980197

[cs], December 2014. URL http://arxiv.org/abs/1412.6980. arXiv: 1412.6980.198

Alexander Kuhnle and Ann Copestake. ShapeWorld - A new test methodology for multimodal199

language understanding. arXiv:1704.04517 [cs], April 2017. URL http://arxiv.org/abs/200

1704.04517. arXiv: 1704.04517.201

Brenden M. Lake and Marco Baroni. Generalization without systematicity: On the compositional202

skills of sequence-to-sequence recurrent networks. In ICML, 2018.203

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron Courville. FiLM: Visual204

Reasoning with a General Conditioning Layer. In In Proceedings of the AAAI Conference on205

Artificial Intelligence, 2017. URL http://arxiv.org/abs/1709.07871.206

Adam Santoro, David Raposo, David G. T. Barrett, Mateusz Malinowski, Razvan Pascanu, Peter207

Battaglia, and Timothy Lillicrap. A simple neural network module for relational reasoning.208

arXiv:1706.01427 [cs], June 2017. URL http://arxiv.org/abs/1706.01427. arXiv:209

1706.01427.210

Joseph Suarez, Justin Johnson, and Fei-Fei Li. DDRprog: A CLEVR Differentiable Dynamic211

Reasoning Programmer. arXiv:1803.11361 [cs], March 2018. URL http://arxiv.org/212

abs/1803.11361. arXiv: 1803.11361.213

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to Sequence Learning with Neural Networks.214

In Advances in Neural Information Processing Systems 27, pp. 3104–3112, 2014.215

Wei Wang, Ming Yan, and Chen Wu. Multi-Granularity Hierarchical Attention Fusion Networks for216

Reading Comprehension and Question Answering. In Proceedings of the 56th Annual Meeting217

of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1705–1714,218

Melbourne, Australia, 2018. Association for Computational Linguistics. URL http://aclweb.219

org/anthology/P18-1158.220

6

http://arxiv.org/abs/1705.03633
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1704.04517
http://arxiv.org/abs/1704.04517
http://arxiv.org/abs/1704.04517
http://arxiv.org/abs/1709.07871
http://arxiv.org/abs/1706.01427
http://arxiv.org/abs/1803.11361
http://arxiv.org/abs/1803.11361
http://arxiv.org/abs/1803.11361
http://aclweb.org/anthology/P18-1158
http://aclweb.org/anthology/P18-1158
http://aclweb.org/anthology/P18-1158


A Appendix221

A.1 Additional Details222

Dataset: To make negative examples in SQOOP challenging, we ensure that both X and Y of a223

question are always present in the associated image and that there are always distractor objects224

Y ′ 6= Y and X ′ 6= X such that XRY ′ and X ′RY are both true for the image. These extra225

precautions guarantee that answering a question requires the model to locate all possible X and Y226

then check if any pair of them are in the relation R.227

Hyperparameters: All models share the same stem architecture which is a CNN based architecture228

of 6 layers. Each layer is a Conv → BatchNorm → ReLU with a MaxPool after layers 1 and 3.229

The input to the stem is a 64 × 64 × 3 image, and the feature dimension used throughout the stem is230

64. All models are optimized using Adam Kingma & Ba (2014) with a learning rate of 3e-4, and231

with minibatches of size 128.232

A.2 Generic Models233

We consider four generic models in this paper: CNN+LSTM, FiLM, Relation Networks (RelNet),234

and Compositional Attention Networks (CAN). For CNN+LSTM, FiLM, and RelNet models, the235

question q is first encoded into a fixed-size representation hq using a unidirectional LSTM network.236

CNN+LSTM flattens the 3D tensor hx to a vector and concatenates it with hq to produce hq x.237

hq x = [vec(hx);hq] (3)

RelNet uses a network g which is applied to all pairs of feature columns of hx concatenated with the238

question representation hq , all of which is then pooled to obtain hq x:239

hq x =
∑
i,j

g(hx(i), hx(j), hq) (4)

where hx(i) is the i-th feature column of hx.240

FiLM networks use N convolutional FiLM blocks applied to hx. A FiLM block is a residual block241

(He et al., 2016) in which a feature-wise affine transformation (FiLM layer) is inserted after the 2nd242

convolutional layer. The FiLM layer is conditioned on the question at hand via prediction of the243

scaling and shifting parameters γn and βn:244

[γn;βn] =Wn
q hq + bnq (5)

h̃nq x = BN(Wn
2 ∗ReLU(Wn

1 ∗ hn−1q x + bn)) (6)

hnq x = hn−1q x +ReLU(γn � h̃nq x ⊕ βn) (7)

where BN stands for batch normalization, ∗ stands for convolution and � stands for element-wise245

multiplications. hnq x is the output of the n-th FiLM block and h0q x = hx. The output of the last FiLM246

block hNq x undergoes an extra 1 × 1 convolution and max-pooling to produce hq x.247

CAN networks of Hudson & Manning (2018) produces hq x by repeatedly applying a Memory-248

Attention-Control (MAC) cell that is conditioned on the question through an attention mechanism.249

The CAN model is quite complex and we refer the reader to the original paper for details.250

A.3 NMN Modules251

As mentioned in the text, our experiments are performed with the Find module from Hu et al.252

(2017) and the Residual module from Johnson et al. (2017) with very minor modifications - we use253

64 dimensional CNNs in our Residual blocks since our dataset consists of 64 × 64 images. The254

equations for the Residual module are as follows:255

θ = ∅, (8)
γ = [W1; b1;W2; b2;W3; b3] , (9)

h̃ = ReLU(W3 ∗ [hl;hr] + b3), (10)

fResidual(γ, hl, hr) = ReLU(h̃+W1 ∗ReLU(W2 ∗ h̃+ b2)) + b1), (11)

7



0 10000 20000 30000 40000 50000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

p(
tre

e) 1 rhs/lhs
18 rhs/lhs

Figure 3: Learning dynamics of layout induc-
tion on 1 rhs/lhs and 18 rhs/lhs datasets using
the Residual module with p0(tree) = 0.5.
All 5 runs of the model do not learn to use
the tree layout for 1 rhs/lhs, the very setting
where the tree layout is necessary for general-
ization.

2 4 6 8 10 12 14
Sharpness

0
1
2
3
4
5
6
7
8

#R
un

s

1 rhs/lhs 18 rhs/lhs

Figure 4: Histogram of sharpness (ρ) values
for attention weights induced on the 1 rhs/lhs
and 18 rhs/lhs datasets. We can observe that
the attention is much sharper for 18 rhs/lhs.

and for Find module as follows:256

θ = [W1; b1;W2; b2] , (12)
fFind(γ, hl, hr) = ReLU(W1 ∗ γ �ReLU(W2 ∗ [hl;hr] + b2) + b1). (13)

In formulas aboveW1,W2,W3 are convolution weights, and b1, b2, b3 are biases. The main difference257

between Residual and Find is that in Residual all parameters depend on the questions words, where258

as in Find convolutional weights are the same for all questions, and only the element-wise multipliers259

γ vary based on the question.260

A.4 Additional Results261

Structure Induction: We visualize the progress of structure induction for the Residual module with262

p0(tree) = 0.5 in Figure 3. The figure shows p(tree) saturates to 0.0 or 1.0 eventually in #rhs/lhs=1263

and #rhs/lhs=18 settings respectively.264

Parametrization Induction: Figure 5 shows how attention weights evolve for an Attention N2NMN265

model in the same context. It is notable that unlike in the gold-standard NMN-Tree model, the266

relation word is mixed with the object words for modules 1 and 2. We also noticed that the model did267

not learn to focus modules 1 and 2 on different words in the #rhs/lhs=1 setting (Figure 5b) as sharply268

as it did in #rhs/lhs=18 (Figure-5a). To substantiate this observation with quantitative results, we269

compute a sharpness ratio ρ = max(αk,X , αk,Y )/min(αk,X , αk,Y ) for modules k = 1 and k = 2270

for each of the 20 modules that we have trained. One can observe from the histogram in Figure 4 that271

attention weights learnt on #rhs/lhs=1 are generally blurry, with ρ being less than 2 for 8 modules out272

of 20.273

8



0 5000 10000 15000 20000

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

0

X
R
Y

0 5000 10000 15000 20000

Iterations

0.0

0.2

0.4

0.6

0.8

1.0
1

X
R
Y

0 5000 10000 15000 20000

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

2

X
R
Y

(a) 18 rhs/lhs

0 5000 10000 15000 20000

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

0

X
R
Y

0 5000 10000 15000 20000

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

1

X
R
Y

0 5000 10000 15000 20000

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

2

X
R
Y

(b) 1 rhs/lhs

Figure 5: All three modules’ attention weights for parametrization of the three question words for (a)
18 rhs/lhs and (b) 1 rhs/lhs version of SQOOP. The model learns to disentangle between X and Y
much better with more rhs/lhs.

9


	Introduction
	Setup
	Experiments
	Related Work
	Conclusion and Discussion
	Appendix
	Additional Details
	Generic Models
	NMN Modules
	Additional Results


